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Quantitative MRI Texture Analysis

in Differentiating Enhancing and Non-enhancing
T1-hypointense Lesions without Application
of Contrast Agent in Multiple Sclerosis

Kvantitativni analyza MRI textury pro

rozliseni enhancujicich a neenhancujicich
T1 hypointenznich lézi bez podani kontrastni
latky u roztrousené sklerézy

Abstract

Aims: The aim of this study was to evaluate texture analysis (TA) in pre-contrast injection MR images to
improve accuracy and to identify subtle differences between enhancing lesions (ELs), non-enhancing
lesions (NELs) and persistent black holes (PBHs). Materials and methodology: The MR image database
comprised 90 patients; 30 of whom had only PBHs, 25 had only ELs and 35 neither EL or PBH. These
were assessed by the proposed TA method. Up to 300 statistical texture features were extracted as
descriptors for each ROI/lesion. Differences between the lesion groups were analyzed and evaluations
were made for area under the receiver operating characteristic curve (A ) for each significant texture
feature. Linear discriminant analysis (LDA) was employed to analyze significant features and increase
power of discrimination. Results: At least 14 texture features showed significant difference between NELs
and ELs, NELs and PBHs, and ELs and PBHs. By using all significant features, LDA indicated a promis-
ing level of performance for classification of NELs and PBHs with A value of 0975 that corresponds to
sensitivity of 94.3%, specificity of 96.3%, accuracy of 95.5%. In classification of ELs and NELs (or PBH),
LDA demonstrated discrimination performance with sensitivity, specificity and accuracy of 100% and
A, of 1. Conclusions: TA was determined as a reliable method, with potential for characterization and
the method can be applied by physicians to differentiate NELs, ELs and PBH in pre-contrast injection
MRI'imaging.

Souhrn

Cile: Cilem této studie bylo zhodnotit analyzu textury (AT) na snimcich MR pred podanim kontrastni latky
zhlediska zlepseni pfesnosti a rozliseni jemnych rozdil mezi enhancujicimi lézemi (EL), neenhancujicimi
lézemi (NEL) a perzistentnimi cernymi dirami (persistant black holes; PBH). Materidl a metodika: Databaze
zobrazeni MR zahrnovala 90 pacientd, z nichz 30 mélo pouze PBH, 25 mélo pouze EL a 35 nemélo ani
EL ani PBH. Tato zobrazeni byla zhodnocena pomoci navrhované metody AT. Bylo extrahovano na
300 statistickych texturnich znakl jako deskriptord kazdého ROI/Iéze. Byly analyzovany rozdily mezi
skupinami l€ézf a byla zméfena plocha pod kfivkou (A) pro kazdy vyznamny texturni znak. K analyze
signifikantnich znakl a ke zvysenf sily odliseni byla pouZita linedrni diskriminantni analyza (LDA).
Wsledky: Nejméné 14 texturnich znakd prokazalo vyznamny rozdil mezi NEL a EL, NEL a PBH a EL a PBH.
PHi pouziti viech vyznamnych znakd naznacila LDA slibnou schopnost klasifikace NEL a PBH s hodnotou
A, 0975, kterd odpovida senzitivité 94,3 %, specificité 96,3 % a presnosti 95,5 %. U klasifikace EL a NEL
(nebo PBH) prokdazala LDA diskriminacni vykon odpovidajici senzitivité, specificité a presnosti 100 %
aA_1.Zdvéry: AT byla vyhodnocena jako spolehliva metoda s potencidlem charakterizovat NEL, EL a PBH
ajakometoda, kteroumohoulékafipouzitkrozliseniNEL, ELaPBH na snimcich MR pied podanimkontrastni
4tky.
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Introduction

Multiple sclerosis (MS) is an immune-
mediated disease of the central nervous
system that affects mostly young adults [1].
Since 1980s magnetic resonance imaging
(MRI) has been the most frequently used
technique for evaluating MS lesions in
the brain and spinal cord and to monitor
progress of the disease [2,3]. An abnormal
signal derived from an MS lesion may be
caused by demyelination and increased
water content of the brain in the vicinity
of the lesion due to breakdown in the
blood brain barrier [4]. These changes and
destruction in the matrix and lesion material
can affectimage by increasing inherent time
(relaxation and recovery time).

T2-weighted (T2WIs) and gadolinium-
-enhanced T1-weighted images (T1Wls)
are sensitive methods that are used to
monitor disease activity in subjects with
MS [5,6]. The majority of new lesions will
become enhanced and usually persist for
2-6 weeks [7]. Approximately 65-80% of
contrast-enhancing lesions (ELs) initially
appear as hypo-intense on T1WIs. Less than
40% of these lesions will persist and become
chronic, resulting in a condition termed
persistent black hole (PBH). The remaining
40% of enhancing lesions gradually return
to isointense state due to remyelination
and resolution of edema [8]. EL is a sensitive
indicator of active inflammation and itimpairs
a patient’s clinical status. PBHs also yield
important information on areas of axonal loss
and are associated with disability [5,6,9,10].

Conventional MRl does not detect
microscopic tissue changes and it has
been indicated that the details are not
visible to the human eye [11]. An MR image
comprises diverse gray-level intensity, and
various tissue types have different textures.
Texture of images describes complex
visual patterns; show arrangements of
structures or sub-patterns and distribution
of pixel intensities within an image
domain [12,13]. At times, patterns within an
image may be different, but this may not
be detected by the human eye. Although
a human can achieve texture in qualitative
terms, mathematically defined texture
properties require quantitative texture
analysis (TA). TA can detect pathological
differences that cannot be perceived
by the human eye using conventional
brain imaging MRI [11]. This mathematical
technique increases quantification of and
information about lesions in the brain that

would be undetectable by conventional
measurements of lesion volume, intensity
and shape [14].

Recent studies have employed TA to
1 - differentiate between lesions, normal
white matter and normal appearing white
matter [11,15-18]; 2 - differentiate between
ELsand non-enhancinglesions (NELs) [19-21]
and between transient and persistent black
holes (PBH) [22]; 3 - follow up therapeutic
response in MS patients [23]; 4 — correlate
MRI texture with tissue pathology [24]; this
study provides additional information in
support of this method.

Previous studies have indicated different
texture features between PBHs and transient
black holes and between ELs and NELs on
a T2WI. Hence active inflammatory or axonal
destruction can affect the texture of a brain
MRI. The aim in this study was to evaluate
texture using a non-invasive method of
detecting changes in ELs, NELs and PBHs
on brain MRI'image in MS patients. To the
best of our knowledge, this is the first study
to apply TA to evaluate differences between
ELs, NELs and PBHs.

Methods
Patients and MRI acquisition
MS evaluation is generally based on con-
ventional MRI imaging, following the
McDonald criteria 2010 [25]. MS patients
with at least two attacks of neurological
deficit, with clinical or paraclinical evidence
of involvement of two different regions in the
brain, optic nerve or spinal cord were selected.
Exclusion criteria included steroid treatment
as it may strongly suppress appearance of ELs,
and individuals who were alcoholics and/or
smokers to avoid potential confusion [26,27].

Ninety patients (27 males and 63 females)
including 80 relapsing-remiting MS (RRMS),
3 primary progressive MS (PPMS) and 7 second-
ary progressive MS (SPMS) were recruited for
participation in this study, they were aged
3541 + 9.84 (mean age + standard deviation)
with MS confirmed by a neurologist. These
patients were divided into three groups:
39 patients (11 males and 28 females aged
3472 + 9.23) had MS lesions with no ELs or
PBHs, 32 patients (9 males and 23 females aged
35.31 + 10.11) had PBHs only and 19 patients
(7 males and 12 females aged 3943 + 9.82) had
ELs only. To detect PBHs, we reviewed each
patient’s imaging within the past 1 year.

T2WIs of each patient were acquired
with a 1.5-T Siemens Trio scanner (Siemens,
Erlangen, Germany) using the turbo spin

echo sequence (TR = 4500 ms, TE = 100 ms,
number of excitations (NEX) = 2, ma-
trix = 512*512, field of view (FOV) = 23cm, slice
thickness =5mm and inter-slice gap = 0.5 mm).

The imaging protocol included T1-weight-
ed spin-echo imaging (TR = 400 ms, TE =
=11 ms, NEX = 2, matrix = 512*512, FOV =
=23cm, slice thickness = 3 mm and inter-slice
gap = 0.5mm). Patients received 0.1 mmol/Kg
paramagnetic agent (Dotarem®, Sanofi, Aulnay-
sous-Bois, France). Post-contrast MR images
were obtained 7 min after the injection.

Texture feature and regions

of interest selection

MR image was inputted in the MaZda soft-
ware (version 4.6, Institute of Electronics, The
Technical University of Lodz, Poland) for TA.
In general, 116 ROIs consisting of 54 NELs,
27 ELs and 35 PBHs were selected for
discrimination and classification. All lesions
were chosen in correspondence to the
regions of post-contrast MRI images (Fig. 1).
Up to 300 texture features were extracted
that, based on Histogram (histogram
distribution of the image), Absolute gradient
(describes local distribution of grey level
differences and spatial variation of grey-
-level values), Run-length matrix (Run length
matrix p (i) represent the number of times
thereis a run of length “j" with intensity ", i.e.
Run length matrix counts of pixel runs with
the specified gray-scale value and length
in a given direction), Co-occurrence matrix
(information about the distribution of pairs
of pixels separated by a given distance and
direction, i.e. represent the second order
image histogram that contains probabilities
of co-occurrence of pixel pairs with a given
distance d (1, 2, 3, 4 and 5) and direction 6
(0, 45, -45 and 90 degree) in image intensity
levels Ng), Auto-regressive model (based on
this model, image pixels have an interaction
with surrounded pixels. Therefore, pixel
intensity is a weighted sum of neighbour-
ing pixel intensities), and Wavelets (analyze
natural nonstationary signals and be localized
in both spatial and frequency domains.
Wavelets decompose the image signals into
frequency components using independent
spatially oriented frequency filters cascaded
in a pyramidal structure) [12,28].

Statistical analysis

Data were tested for normality by the
Kolmogorov-Smirnov test. One-way analysis
of variance (ANOVA) was used to assess dif-
ferences between groups (NEL, EL and PBH).
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Fig. 1. Sample of NEL, EL and PBH lesions on T2WI. All lesions on T2WI (left) were selec-
ted according to post-contrast corresponding (right) to NEL (A), EL (B) and PBH (C).

For significant texture features, post hoc
Scheffe or Tamhane'’s T2 test was applied
to compare between groups. A P-value
of < 0.05 was considered significant. An area
under the receiver operating characteristic

(ROC) curve (A) was calculated for each
significant texture feature in order to
evaluate overall performance of classification
between the groups [29]. A values were
estimated beyond the 95% confidence level.

Texture analysis

and classification

Texture features that showed significant dif-
ference between the two groups were used
for computerized multi parameter TA (MPTA)
method. Linear discriminant analysis (LDA)
was used to transform raw texture features
to lower-dimensional spaces and to increase
discriminative power; LDA seeks the most ef-
ficient directions for maximal separation of
features. LDA demonstrated that variability
among feature vectors of the same class
(within class scatter) was minimized and
variability among the feature vectors of dif-
ferent classes (between class scatter) was
maximized. Features processed by LDA were
considered useful for pattern recognition
and classification as they put data of the
same class closer together and data of dif-
ferent classes further apart. First nearest
neighbor (1-NN) classifier was used for
features resulting from LDA.

In order to compare performance of dia-
gnostics, three well-known indexes were
calculated: accuracy (ACC), sensitivity (SEN)
and specificity (SPC). Their definitions are
given as:

N+ N,

™

(1) Accuracy (ACC) =

NTN + NFN + NTP + NFP

NTP
(2) Sensitivity (SEN) = ——

TP N

NTN
(3) Specificity (SPC) = ——

™ FP

Where N, and N, are the number of true
positive and true negative cases, respectively.
N_andN,, are the number of false positiveand
false negative cases, respectively. In this study,
classification was performed between 1. NELs
and ELs (positive - EL, negative — NEL); 2. NELs
and PBH (positive = PBH, negative — NEL) and
3. ELs and PBHs (positive — EL, negative — PBH).
An A value was also calculated to evaluate
overall performance of the proposed MPTA
method. A, values were estimated beyond
the 95% confidence level. Fig. 2 shows the
CAD processing steps.

Results

Texture feature changes

between groups

NELs vs. ELs

In general, 116 ROIs consisting of 54 NELs,
27 ELs and 35 PBHs were selected for
statistical analysis and classification.
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Fig. 2. Overview of texture analysis pro-
cess on brain MRl images.

Eighteen texture features showed significant
difference between NELs and ELs: Correlation
S(1,-1) (Correlat_S(1,-1)), Correlat_S(1,1), Cor-
relat_S(1,0), Correlat_5S(0,2), Angular second
moment S(5,0) (ASM_S(5,0)), ASM_S(1,-1), Dif-
ference variance S(0,1) (DV_S(0,1)) and Sum
Entropy S(1,0) (SE_S(1,0)) from Co-occurrence
matrix Where S(i, j) shows the direction of
matrix construction and inter pixel distance
i along rows and j along columns of the
matrix; ‘high-high” energy components in first
level wavelet decomposition (WavEnHH_s-1),
‘low-high” energy components in first level
wavelet decomposition (WavEnlLH_s-1),
WavEnLL_s-2 and WavEnLH_s-2 from Wavelet;
Non-zero gradient matrix (Gr_nonzeros)
and Kurtosis of absolute gradient (Gr_
Kurtosis) from Gradient; Short Run Emphasis
in Horizontal direction (SRE_Horz) and in
45-degree direction (SRE_45Dgr) Run Length
Non-Uniformity in Vertical direction (RLNU_
Vert) from Run-length matrix and Mean from
Histogram (Tab. 1).

NELs vs. PBHs

Fourteen texture features showed significant
difference between NELs and PBHs: WavEnL
L_s-1,WavEnLL_s-2,WavEnLH_s-2fromWave-

Tab. 1. Summary of performance for significant texture features in classification of

A; value?

A —area under ROC curve; ASM —indicates angular second moment; Gr_nonzeros — non-zero
gradient matrix; SE — sum entropy; DV - difference variance; WavEnHH, WavEnLL and Wa-
vEnLH - 'high-high’, 'low-low" and ‘low-high’ energy components in wavelet decomposition
respectively; SRE_45Dgr and SRE_Horz - short sun emphasis in 45-degree and horizontal di-
rection respectively; Gr_Kurtosis — kurtosis of absolute gradient; RLNU_Vert — run length non-

NELs and ELs and the associated P-values.
Texture Features Post Hoc Tests (P-value)
Correlat_S(1,-1) P <0.001
ASMS(5,0) P <0.001
WavEnHH_s-1 P <0.001
ASM_S(1,-1) P < 0.001
Correlat_S(1,1) P <0.001
Mean P <0.001
Gr_nonzeros P <0.001
SE_S(1,0) P <0.001
DV_S(0,1) P <0.001
WavEnLL_s-2 P <0.001
Correlat_5(1,0) P <0.001
WavEnLH_s-1 P <0.001
SRE_45Dgr P < 0.001
Gr_Kurtosis P=0.015
RLNU_Vert P <0.001
WavEnlLH_s-2 P <0.001
Correlat_S(0,2) P =0.008
SRE_Horz P=0.012

-uniformity in vertical direction; ® numbers in parentheses are 95% Cl.

0.870 (0.794, 0.945)
0.868 (0.777,0.958)
0.859 (0.754, 0.965)
0.826 (0.725,0.928)
0.822(0.729,0916)
0.822 (0.693, 0.950)
0.806 (0.686, 0.925)
0.805 (0.701,0.909)
0.802 (0.690, 0915

0.776 (0.678,0.875
0.774 (0.657, 0.892
0.766 (0.640, 0.893)
0.748 (0.618, 0.879)
0.729 (0.619, 0.840)

)
0.787 (0.654, 0.921)
)
)

0.727 (0.593, 0.861)
0.691 (0.555,0.827)
0.667 (0.512, 0.821)

let; Mean from Histogram; Non-zero
gradient matrix (Gr_nonzeros) from Gradient;
Sum Average S(3-3) (SA_S(3-3)), SA_S(3,3),
SA_S(3,0), Sum Variance S(2,2) (SV_S(2,2)), Cor-
relat_S(0,2) Correlat_5(1,0), and SE_S(1,0) from
Co-occurrence matrix; SRE_45Dgrand RLNU_
Vert from Run-Length matrix and (Tab. 2).

ELs vs. PBHs
Eighteen texture features showed significant
difference between NELs and PBHs: Dif-
ference Variance S(0,1) (DV_S(0,1)), DV_S(2,2),
DV_S(0,4), Correlat_S(1,1), Correlat_S(1,-1),
Correlat_S(1,0), SA_S(4,0), SE_S(1,0) and
Angular Second Moment S(0,1) (ASM_
S(0,1) from Co-occurrence matrix; Gr_
nonzeros and Gr_ Kurtosis from Gradient;
WavEnHL_s-1, WavEnLH_s-1, WavEnLL_s-2,
WavEnHL_s-2, WavEnLL_s-3 from Wavelet;
SRE_45Dgr from Run-length matrix and
Mean from Histogram (Tab. 3).

Briefly, the SE and DV measure any disorder
or complexity and heterogeneity of an image.

The correlation feature is a measure of gray-
level linear dependencies in the image. SA
represents the mean of gray-level image in
the spatial domain. ASM measures textural
uniformity. High value occurs when the gray-
level distribution has a constant. SRE measures
distribution of short runs and would occur
more often in a fine texture. RLNU measures
similarity of run lengths within the image. The
RLNU is expected small if the run lengths are
not similar. Gr_nonzeros measures percentage
of pixels with non-zero gradient.

Area under the ROC curve for
classification of ELs, NELs and PBHs
ROC analysis indicated that texture features
of Co-occurrence matrix (Correlat_S(1,-1) and
ASM_S(5,0)) and Wavelet (WavEnHH_s-1)
had the highest A values in terms of dif-
ference between NELs and ELs. The A
value of Correlat_S(1,-1), ASM_S(5,0) and
WavEnHH_s-1 were 0.870, 0.868 and 0.859,
respectively (Tab. 1).

Cesk Slov Neurol N 2017: 80/113(6): 700-707

703




QUANTITATIVE MRI TEXTURE ANALYSIS IN DIFFERENTIATING ENHANCING AND NON-ENHANCING T1-HYPOINTENSE LESIONS

The A values of texture features of Wavelet
(WavEnLL_s-2, A = 0.794) and Histogram
(Mean, A =0.776) were higher than others in
terms of difference between NELs and PBHSs.
The A values of each significant feature are
listed in Tab. 2.

Texture features of Co-occurrence matrix
(DV_5(0,1) and Correlat_S(1,1)) had higher A
values in terms of difference between ELs
and PBHs. The A_value of DV_5(0,1) and Cor-
relat_S(1,1) were 0.833 and 0.831, respectively
(Tab. 3).

Texture analysis and classification
Diagnostic performance of the MPTA for clas-
sification and comparison between the NEL
and PBH groups are shown in Tab. 4. Fig. 3
shows ROC curves of the proposed MPTA
that demonstrate excellent performance in
terms of classification between ELs and PBHs
and between ELs and NELs with A =1 that
corresponds to sensitivity, specificity and
accuracy of 100% (Tab. 4). Discrimination
power was achieved with A value of 0975,
corresponding to sensitivity of 94.3%,
specificity 96.3% and accuracy 95.5% (Fig. 3).

Discrimination distributions for LDA are
illustrated in the majority of discriminating
features direction and show that LDA had
the greatest power to discriminate between
ELs and PBHs and between ELs and NELs
(Fig. 4).

Discussion

Discrimination between ELs, NELs and
PBHs is one of the most critical factors to
improve the initial diagnosis and therapy.
The primary objective of this study was to
evaluate texture ability as a non-invasive
method to distinguish between NELs, ELs
and PBHs. Results of comparisons showed
a significant difference in terms of texture
features between the three groups. The
results of this study demonstrated that the
TA was highly accurate in differentiating
NELs (or PBHs) from ELs and NELs from PBH.
The best results were driven with A of 1in
differentiating between NELs (or PBHs) and
ELs (Fig. 3).

In general, according to the A -value,
Co-occurrence matrix features had higher
performance than other feature groups in
terms of differentiation between NELs (or
PBHs) and EL but Wavelet features had an
advantage over the other feature groups
in terms of differentiation between NELs
and PBHs. The highest performance in clas-
sification was achieved by the Co-occur-

Tab. 2. Summary of performance for significant texture features in classification
of NELs and PBHs and the associated P-values.
Texture Features

Post Hoc Tests (P-value) A; value?

WavEnLL_s-2 P <0.001 0.794 (0.693, 0.894)
Mean P <0.001 0.776 (0.671,0.881)
Gr_nonzeros P =0.006 0.767 (0.665, 0.869)
SA_S(3-3) P <0.001 0.767 (0.660, 0.875)
WavEnLL_s-1 P <0.001 0.759 (0.693, 0.897)
SA_S(3.3) P <0.001 0.756 (0.647, 0.865)
SA_S(3,0) P <0.001 0.740 (0.627,0.853)
Correlat_5(0,2) P =0.037 0.680 (0.565, 0.796)
SRE_45Dgr P=0.042 0.666 (0.552,0.779)
SE_S(1,0) P=0.029 0.660 (0.547,0.773)
SV_S(2,2) P=0.027 0.631 (0.516, 0.746)
RLNU_Vert P =0.025 0.631 (0.514, 0.748)
Correlat_S(1,0) P=0439 0.626 (0.511,0.741)
WavEnLH_s-2 P =0.001 0.608 (0.478, 0.739)

A_ - area under ROC curve; WavEnLL and WavEnLH - ‘low-low" and low-high’ energy com-
ponents in wavelet decomposition respectively; Gr_nonzeros — non-zero gradient matrix;
SA —sum average; SRE_45Dgr — short sun emphasis in 45-degree direction; SE — sum entropy;
SV - sum variance; RLNU_Vert — run length non-uniformity in vertical direction; ®numbers in
parentheses are 95% Cl

Tab. 3. Summary of performance for significant texture features in classification of
ELs and PBHs and the associated P-values.
Texture Features

Post Hoc Tests (P-value) A;value?

DV_S(0,1) P <0.001 0.833(0.724,0.942)
Correlat_S(1,1) P <0.001 0.831 (0.720, 0.942)
DV_S(2,2) P =0.001 0.816 (0.704, 0.927)
Gr_ Kurtosis P=0.011 0.813 (0.701, 0.924)
ASM_S(0,1) P <0.001 0.794 (0.672,0915)
Correlat_S(1,-1) P <0.001 0.792 (0.679,0.904)
Mean P =0.001 0.759 (0.611,0.906)
WavEnLH_s-1 P <0.001 0.739 (0.610, 0.867)
SA_S(4,0) P <0.001 0.739 (0.589, 0.888)
WavEnHL_s-1 P =0.006 0.737 (0.608, 0.865)
DV_S(0,4) P =0.030 0.733 (0.607, 0.859)
SE_S(1,0) P =0.001 0.726 (0.579, 0.873)
WavEnHL_s-2 P=0.004 0.723(0.593, 0.853)
Correlat_5(1,0) P =0.008 0.723 (0.593, 0.852)
WavEnLL_s-2 P=0.002 0.710 (0.552, 0.868)
WavEnLL_s-3 P =0.001 0.696 (0.537, 0.856)
SRE_45Dgr P =0.006 0.683 (0.532,0.833)
Gr_nonzeros P <0.001 0.680 (0.523, 0.838)

A, - area under ROC curve; DV - difference variance; Gr_Kurtosis — kurtosis of absolute gra-
dient; ASM = Angular Second Moment; WavEnLH, WavEnHL and WavEnLL - ‘low-high’, ‘high-
-low" and 'low-low’ energy components in wavelet decomposition respectively; SA — sum
average; SE - sum entropy; SRE_45Dgr — short sun emphasis in 45-degree direction; Gr_non-
zeros — non-zero gradient matrix; © numbers in parentheses are 95% Cl.
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Tab. 4. Diagnostic performance of proposed computer aided diagnostic system for
classification of NELs, ELs and PBHs.
Correct
0, (0) (0) a
Group SEN (%) SPC (%)  ACC (%) A value Classification
NEL vs. PBH 943 96.3 95.5 0.975(0.950, 1) 85/89 (95.5%)
NEL vs. EL 100 100 100 1 81/81 (100%)
EL vs. PBH 100 100 100 1 62/62 (100%)
SEN - sensitivity; SPC - specificity; ACC - accuracy; PPV - positive predictive value;
NPV — negative predictive value; A - area under ROC curve; ° - numbers in parentheses are
95% Cl.
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Fig. 3. The ROC curve diagrams for texture analysis with LDA in classification of NELs, ELs

and PBHs.

rence matrix based feature (Correlat_S(1,-1))
with A =0.870. Among the texture features,
there was a significant difference between
the three groups and Run-length matrix
features were less sensitive than the others
as the features groups had a lower A -value
(ranging from 0.631 to 0.766).

A, values ordered by LDA using all
significant texture features had a higher level
of performance than each of the texture

features alone to classification groups. In
this regard, A_value of LDA in classification
NELs and PBHs were 0.975 and this cor-
responded to sensitivity of 94.3%, specificity
of 96.3% and accuracy of 95.5%, while the
highest level of performance was achieved
by WavEnLL_s-2 with A =0.794. LDA yielded
excellent performance in classifying NELs
from ELs and PBHs from ELs with A =1,
while the highest performance achieved by

Correlat_5(1,~1) and DV_5S(0,1) were the A
value of 0.870 and 0.833, respectively.

Based on significant texture features,
EL had a higher Mean (or intensity) than
PBH and NEL on T2WI. These differences
arise from the result of demyelination and
increased water content of the lesions and
ineffective spin-spininteraction. The result of
this ineffective interaction caused increased
T2 relaxation time and intensity. It has been
shown that tissue-relaxation rates in pre-
contrast injection phase showed significant
differences between ELs and NELs as ELs
having a higher mean transverse relaxation
rate and so appeared brighter in T2WI [30].
Our study confirmed this result by using TA
that did not require measurement of tissue-
-relaxation rate. On the other hand, results
indicate that texture features based on
Gradient, Co-occurrence matrix and Wavelet,
EL had less heterogeneity in pixel intensity
distribution than PBH (or NEL) and PBH
had less heterogeneity than NEL on T2WI.
On the other hand, according to the Run-
length matrix based features, EL had finer
texture than PBH (or NEL) and PBH had finer
texture than NEL on T2WI. Several studies
have evaluated texture features for dif-
ferentiation of lesions in MS subjects. In this
regard, dynamic texture parameter analysis
(DTPA) was used to detect pathological
changes between ELs and NELs by dynamic
susceptibility contrast-enhanced imaging.
It has been shown that the first order
texture features in DTPA were useful for dif-
ferentiation of NELs and ELs [19,20]. Yu et al.
examined 8 texture features (5 Run-length
matrix and 3 Histogram features) to dif-
ferentiate 9 ELs and 23 NELs with 100%
accuracy [21].

Zhang et al. indicated that TA based on
Polar Stockwell transform were useful to find
differences between persist and transient
acute black holes using conventional
TIWI [22]. In this study, first and second
(or high) order texture features such as
Run-length matrix, Co-occurrence matrix
and Wavelet features were used to detect
subtle differences in ELs, NELs and PBHs in
conventional T2Wis.

Researches in recent years have indicated
that advanced MRI techniques have
significantly improved conventional MRI
techniques [31]. In this regards, magnetization
transfer imaging, Diffusion Tensor Imaging,
proton MRI spectroscopy have the capacity
to discern between ELs and NELs (or
PBHs) [30, 32-35]. However, up till now,
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advanced MRI techniques have not been
routinely implemented in imaging centers.
The results of this study indicate that TA can
improve our understanding of the MS disease
from conventional MRl images.

New lesions at follow-up scans that imply
activity may need therapy switch [25].
Contrast agents require additional time and
cost and can cause discomfort for patients
during administration and MRI imaging.
Gadolinium-based contrast agents (GBCA)
are widely used in MRl imaging due to their
paramagnetic properties. It has been used to
evaluate the MS plaque activity by increas-
ing signal intensity on T1WIs. Inflammation
in MS can disrupt blood brain barrier. Hence,
gadolinium accumulation is proportional
to a plaque activity, as it more intensively
accumulatesinnew active plaques. Although
recent researches have indicated that signal
intensity of dentate nucleus and the globus
pallidus on unenhanced T1WIs can increase
after multiple administrations and correlated
with the number of administrations [36-38]
and this can leads to misunderstanding in
interpretation of MR images. Also, according
to the U.S. Food and Drug Administration
(FDA), although there have been no
reports of signs of central nervous system
toxicity based on GBCA, every precaution
should be taken to reduce the potential for
gadolinium accumulation. In this regard,
gadolinium use should be limited [39]. It is
desirable to introduce a method to identify
and characterize active MS lesions without
administration of a contrast agent. The
results of this study showed that TA provided
useful information and had the potential to
characterize EL in T2WI MRI sequence and
save time and costs.

In this study, some limitations should be
clearly noted. First, the data group was small,
further investigation with a larger data set is
needed. Second, ROl was selected manually,
further investigation can be equipped
with automated, or semi-automated ROl
selection. Third, subjects could have been
positioned differently during the process
of image acquisition. Since the magnetic
field is non-uniform along MRI system
magnet, textural features of tissue may be
different. Fourth, patients with a history
of neurological symptoms suggestive of
demyelination were excluded. Finally, in this
study, we just indicated that texture analysis
can differentiate between three types of MS
lesions. Further study is needed to examine
lesion types in a prospective approach.
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Fig. 4. Sample distributions after texture analysis, LDA: NELs and ELs (A); ELs and PBHs
(B); NELs and PBHs (C). MDF: Most discriminating features; “1” represents NEL in (A)
and (C), “2" represents EL in (A) and (B). “1” represents “2" represents PBH in (B) and (C)

respectively.

Conclusion

Generally, our results indicate that TA is
a useful tool for discrimination of ELs, NELs
and PBHs by a conventional MRI sequence.
The main advantage of this method is that it
can be an auxiliary tool toimprove diagnostic
accuracy and to provide new insights into
lesions using conventional MRI sequences.
Furthermore, it incurs no additional cost,
pulse sequences or scanning time. TA can be
an auxiliary tool to help physicians improve
their understanding of MS pathophysiology
in conventional MRI sequences.
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