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OKÉNKO STATISTIKA

Úvod
Tato kapitola statistického seriálu rozšiřuje
předchozí díly věnované sumárním statisti-
kám a prezentaci opakovaně měřených hod-
not. Pojem, kterým se budeme zabývat, se
jmenuje transformace dat nebo lépe statická
transformace dat. Zadáte-li si do interneto-
vého vyhledavače pojem data transforma-
tion, budete ve většině odkazů poučeni, že
jde o konverzi dat z jednoho formátu do ji-
ného. Heslo vás tedy bude odvádět spíše
na pole aplikované informatiky. Při zpraco-
vání dat definujeme transformaci v užším
slova smyslu – jde o aplikaci matematické
funkce na primární data za účelem jejich
převedení do podoby výhodnější pro zpra-
cování požadovanými statistickými meto-
dami. Nejčastějším požadavkem je dosažení
symetrického tvaru rozložení, tedy tzv. nor-
málního typu, a proto je velká část trans-
formací označována jako normalizace hod-
not. Důvodů pro transformaci dat je ovšem
více než pouze dosažení normálního tvaru
rozložení a obecně je lze sumarizovat takto:
• vyřešení asymetrického nebo atypického

tvaru rozložení
• vyrovnání variability hodnot v různých

srovnávaných skupinách
• řešení velkého numerického rozsahu hod-

not, který komplikuje následné zpracování
a snižuje přehlednost výstupů

• potřeba přehledného grafického znázor-
nění dat

• linearizace nebo jiná úprava vztahu dvou
a více proměnných

Výpočetní stránka je jednoduchá. Vybra-
nou matematickou funkci aplikujeme na
každou jednotlivou hodnotu v souboru
a tzv. primární data takto změníme na da-
ta transformovaná a na nich potom prove-
deme potřebné statistické operace (sumari-
zaci dat, statistické testy, srovnání skupin
apod). Celý proces ovšem musíme mít

pod kontrolou, což znamená především
následující:
• Ne všechny funkce jsou vhodné na všechny

typy dat. Po transformaci tedy musíme
nejprve prověřit, zda jsme skutečně do-
sáhli potřebného efektu.

• Proces musí být plně vratný. Transformo-
vaná data tedy musíme být schopni kon-
vertovat zpět na primární hodnoty.

Transformace dat je užitečný nástroj, který
může podstatně zjednodušit řadu pro-
blémů souvisejících s reálnými daty. Nejčas-
těji jde o nejrůznější variace následujících
problémů:
• Sledujeme například růst nějakého biolo-

gického systému nebo vývoj jeho funkcí
v čase a hodnoty měřeného znaku po-
stupně výrazně numericky rostou. Tím vzni-
kají při zpracování velké problémy. Po-
zději získaná velká čísla mají větší rozptyl
než časná měření a problémem se stává
jejich srovnání běžnými statistickými me-
todami. Někdy ani nelze všechny hodnoty
přehledně zachytit v jednom grafu. Trans-
formace dat upravující numerický rozsah
hodnot zde rovněž stabilizuje rozptyl měření
a umožňuje grafické zpracování souboru.

• Jiným typickým příkladem může být stu-
dium vlivu stresového faktoru na biolo-
gický systém, např. bakteriální kulturu.
Část populace je vůči aplikovanému fak-
toru rezistentní a nereaguje, u citlivých
jedinců naopak dojde k snížení metabo-
lické aktivity. Výsledné rozložení hodnot
se změní ze symetrického na asymetrický
tvar a nastane problém se srovnatelností
souborů s různým tvarem rozložení.

• Jsme pod tlakem požadavku zpracovat data
výpočtem aritmetického průměru a smě-
rodatné odchylky, avšak naše měření
jsou rozložena silně asymetricky a aritme-
tický průměr není reprezentativním uka-
zatelem středu. Transformace převádějící

primární data na normální tvar rozložení
umožní aplikovat požadovanou metodiku
hodnocení, byť až na transformovaných
hodnotách.

V následující části se pokusíme vysvětlit
principy a přínos transformace dat na nej-
častěji používané formě, tedy logaritmování
dat.

Logaritmická transformace jako
nejčastěji aplikovaná metoda
Logaritmickou transformací dat se míní pře-
vod primárních dat do logaritmického tvaru
pomocí přirozeného nebo jiného typu lo-
garitmu. Logaritmická transformace efek-
tivně zasahuje především u asymetrických
rozložení zešikmených doprava, tedy s od-
lehlými vyššími hodnotami (obr. 1). Toto roz-
ložení se modelově nazývá logaritmicko-
normální (někdy také log-normální). Loga-
ritmování je doporučeno především pro
soubory s velkým numerickým rozsahem
takto rozložených hodnot, kdy nejvyšší číslo
převyšuje nejmenší hodnotu 3× a více.

Logaritmická transformace nám pomáhá
vyřešit v přírodě velmi častý typ asymetrie
hodnot. Logaritmováním pozitivně zešikme-
ného rozložení dostaneme normální rozlo-
žení, u kterého již lze pracovat s běžným
statistickým aparátem odhadu aritmetického
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průměru. Logaritmovat ovšem nelze nasle-
po, u jiných typů rozložení (obr. 1) nelze
kýžený efekt očekávat. Logaritmování je
nevhodné u dat, která již jsou v loga-
ritmickém tvaru (např. pH hodnoty), a rov-
něž u nalevo zešikmených rozložení (tedy
s nízkými odlehlými hodnotami).

Zpracované hodnoty lze následně publi-
kovat přímo v logaritmickém tvaru, musíme
to ovšem do tabulek i grafů jasně uvést

(např. data in log scale, data logarithmically
transformed, apod). U silně asymetrických
nebo numericky proměnlivých parametrů
toto doporučujeme především u grafů, které
jsou v logaritmickém tvaru čitelnější a pře-
hlednější. Mezi recenzenty vědeckých časo-
pisů ale bývají zastoupeni puritáni vyžadující
„čistou“ prezentaci primárních dat, a tam
s logaritmovanými, ani jinak změněnými
hodnotami neuspějeme. To ovšem nevadí,

neboť po provedení potřebných výpočtů
můžeme transformovaná data i výstupy vý-
počtů zpětně převést na původní jednotky
exponenciální funkcí (obr. 1). Převádíme-li
takto aritmetický průměr počítaný na loga-
ritmovaných datech, získáváme v původ-
ních jednotkách tzv. geometrický průměr
(geometric mean, GM). Tato statistika je
pro nás v tomto seriálu nová, a proto jí vě-
nujme určitý prostor. Zaslouží si to, neboť

Tab. 1. Ukázka výpočtu geometrického průměru s pomocí různých typů logaritmické transformace dat.

parametr X různé formy log transformace
Ln (X) Log10 (X)

1 0 0
2 0,693147 0,30103
3 1,098612 0,47712
10 2,302585 1,0000

geometrický průměr: 2,78 aritmetický průměr: 1,024 aritmetický průměr: 0,44454

zpětná transformace:
EXP(1,024) = 2,78 100,44454 = 2,78

Postup výpočtu:

1. Transformace primárních hodnot na
logaritmický tvar 

2. Výpočet aritmetického průměru (nebo
jiných statistik) u logaritmovaných 
hodnot

3. Případná zpětná transformace pomocí
exponenciální funkce se stejným zá-
kladem jako použitý logaritmus 

Obr. 1. Normalizující efekt logaritmické transformace dat.
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se tedy výpočet GM doporučuje nebo do-
konce standardně předepisuje (např. v nor-
mách pro hodnocení kontaminace životního
prostředí). Z klinických dat jsou vhodným
kandidátem na výpočet GM například počty
krevních buněk, neboť typicky vykazují log-
normální tvar rozložení s častými odlehlými
hodnotami.

Jakkoli je vzorec pro výpočet geometric-
kého průměru poněkud nepěkný, lze z něj
vyčíst ideální aplikaci této statistiky. Všim-
něte si, že jednotlivé hodnoty parametru X
se mezi sebou násobí, a tak se vzájemně
multiplikují. Proto je geometrický průměr
užitečným ukazatelem středu u dat, která
vyjadřují procentickou změnu hodnot (tzv.
rate data). Už sama podstata takových dat
totiž implikuje vzájemné násobení. Mějme
5 po sobě následujících měření vyjadřujících
měsíční změnu hodnoty parametru X v %
(mitotická aktivita buněk v tkáňové kultuře,
kostní denzita, odezva nervových vláken,

apod) – viz modelová data v tab. 3. Pokud
bychom procentické změny sumarizovali
např. mediánem nebo aritmetickým průmě-
rem, dostali bychom velmi problematické
výstupy. Geometrický průměr se zde ideálně
hodí, neboť umožní sumarizovat relativní
nárůst i pokles hodnot a výsledkem je in-
terpretovatelná průměrná relativní změna
daného parametru. Dalším typickým příkla-
dem pro správnou aplikaci geometrického
průměru by mohly být růstové nebo meta-
bolické rychlosti, případně vývoj obratu nebo
ekonomických nákladů v čase.

Je tedy evidentní, že geometrický průměr
není samoúčelná míra, u asymetrických roz-
ložení může vhodně nahradit aritmetický
průměr a u poměrových indexů je statisti-
kou s vysokou interpretační hodnotou. Vý-
počet GM ale není bez omezení. Jako sta-
tistika středu je definován pro soubory
kladných reálných čísel, čímž se myslí nenu-
lových čísel. Pokud se v souboru vyskytne

je v běžné klinické literatuře velmi nespra-
vedlivě opomíjena.

Matematicky řečeno je geometrický prů-
měr n-tá odmocnina součinu primárních
hodnot. Výpočet se tedy podstatně liší od
průměru aritmetického, místo sčítání zde
hodnoty postupně násobíme. Nemáme-li
k dispozici statistický program, lze vše po-
hodlně spočítat logaritmickou transformací
hodnot dle postupu doloženého v tab. 1
nebo 2.

Geometrický průměr (GM) = (Π X)

Nebo jinou formou zápisu: 
GM(x1, x2, x3) = (x1 . x2 . x3)1/3

U rozložení zešikmených doprava (obr. 1)
leží geometrický průměr mezi mediánem
a aritmetickým průměrem a výrazně lépe
odráží reálný kvantitativní střed hodnot než
aritmetický průměr. Je také méně citlivý na
odlehlé hodnoty. Pro log-normální rozložení

Tab. 2. Příklad práce s asymetrickým rozložením hodnot (viz též obrázek 1).

naměřené hodnoty minimum medián aritmetický průměr
(např. koncentrace látky) maximum (10%; 90% empirický kvantil)* (95% int. spolehlivosti)

primární naměřené hodnoty: X
3,2 / 3,4 / 4,7 / 4,8 / 4,9 / 5,9 / 6,9 / 3,2 / 19,8 6,9 (3,4; 18,1) 9,2 (5,8; 12,6) **
9,5 / 11,4 / 12,9 / 14,5 / 18,1 / 19,8 

logaritmované hodnoty: Xtr = LN (X)
1,16 / 1,22 / 1,55 / 1,57 / 1,59 / 1,77 / 1,16 / 2,99 1,93 (1,22; 2,90) 2,05 (1,67; 2,42)
1,93 / 2,25 / 2,43 / 2,56 / 2,67 / 2,90 / 2,99

Sumární statistiky po zpětné 3,2 / 19,8 6,9 (3,4; 18,1) geometrický průměr 
transformaci funkcí EXP(Xtr) (95% int. spolehlivosti)

7,8 (5,3; 11,2) ***

* Pořadové statistiky opět potvrzují svoji univerzálnost. Transformace nijak nezměnila jejich pozici, ani význam. 
** Aritmetický průměr původních (asymetricky rozložených) hodnot není reprezentativním ukazatelem středu, nicméně lze ho spočítat.
Obdobně také jeho 95% interval spolehlivosti, který je symetrický a neodráží reálný tvar rozložení. 
*** Zpětnou transformací lze převést i interval spolehlivosti kalkulovaný na logaritmovaných datech. Získáváme asymetrický interval, který
odráží skutečně reálný tvar rozložení původních hodnot. 

1
–
N

Tab. 3. Příklad aplikace geometrického průměru.

Měření Hodnota Postupné poměrné 
parametru navýšení/pokles

Vstup 1 –
1. měsíc 1,130 13 %
2. měsíc 1,379 22 %
3. měsíc 1,544 12 %
4. měsíc 1,467 –5 %
5. měsíc 1,276 –13 %

Výpočet geometrického průměru pro procentické 
změny parametru:

GM = (1,13 × 1,22 × 1,12 × 0,95 × 0,87)(1/5) = 1,05 = průměrná
měsíční relativní změna hodnoty

Kontrola: při průměrné měsíční změně +5 % dostaneme skutečnou
výslednou hodnotu: 1 × 1,05 × 1,05 × 1,05 × 1,05 × 1,05 = 1,276
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nula, nemá výpočet GM smysl, neboť tato
vynuluje součin hodnot. Tento problém se
týká logaritmické funkce obecně, neboť
nulu nejde logaritmovat. Zde nabízíme ur-
čitá řešení takové situace:
• Použití pozměněné transformace 

Xtr = Ln (X + 1).
• Nahrazení nulových hodnot jinými kvan-

titativními hodnotami. Například u labo-
ratorních hodnot to může být polovina
detekčního limitu. Nulové hodnoty lze také
substitučně nahradit hodnotou 1, která
následně nezmění součin ve vzorci pro
GM a informace o daném vzorku zů-
stane zachována. Takové substituční po-
stupy ale mají své kritiky a musí být jasně
zdůvodněny.

Další typy statistické 
transformace dat a závěr
V podstatě jakoukoli matematickou funkci
lze zapojit do transformace dat. Kromě lo-
garitmování se v praxi relativně často uplat-
ňují následující postupy:
• Odmocninová transformace je efektivní

pro dosažení homogenity rozptylu u roz-
ložení Poissonova typu, kde je rozptyl

úměrný průměrné hodnotě. Na primární
data je jednoduše aplikována druhá od-
mocnina. Při aplikaci je nutné kontrolovat
vstupní data a výsledný efekt. Čísla mezi
0 a 1 se budou chovat jinak (zvětšovat
hodnotu) než čísla > 1 (tato se budou sni-
žovat). Druhá odmocnina ze 4 je 2,
z 0,40 je to 0,63. Nedoporučuje se tedy
takto ošetřovat proměnné s hodnotami
< 1 a zároveň > 1.

• Inverzní transformace jednoduše převádí
primární data x do podoby 1/x. Tato
funkce přirozeně dělá z malých čísel velká
a naopak a bez předchozích úprav na
primárních datech tedy převrátí pořadí
hodnot. Funkce může sloužit jako nor-
malizační pro hodnoty s exponenciálním
rozložením.

• Arcsin transformace je doporučena pro
soubory relativních hodnot, tedy podílů
ležících numericky mezi 0 a 1. Velmi často
je aplikována až na druhou odmocninu
těchto čísel. Vhodná i pro normalizaci sou-
borů s velmi malými podíly.

Takto bychom mohli pokračovat samo-
zřejmě dále, nicméně vymezený prostor to

neumožňuje. Schováme se tedy za velmi
praktickou radu. Pokud tvar rozložení nebo
hodnoty rozptylu vámi analyzovaných dat
dělají problémy i po aplikaci jednoduchých
transformačních funkcí, obraťte se raději
s prosbou o konzultaci na odborníky – ma-
tematiky. U transformace dat se totiž musí
postupovat citlivě, aby složitost samotné trans-
formace nezastínila analyzovaný problém.

Snad se nám povedlo představit trans-
formaci jako užitečnou formu úpravy pri-
márních dat, nad kterou si analytik může
udržet plnou kontrolu. Závěrem je ovšem
nutné připomenout, že do transformace dat
není třeba se nutit, pokud nás k tomu ne-
vedou vážné důvody. Jak jsme již doložili
v předchozích kapitolách, jakékoli typy roz-
ložení umíme sumarizovat pomocí robust-
ních pořadových statistik (medián, vybrané
empirické percentily – kvantily). Jak je patrné
z obr. 2, tyto statistiky umí reprezentativně
podchytit i velmi asymetrická rozložení a ni-
jak netrpí výskytem odlehlých hodnot. Kdykoli
tedy selže pokus o transformaci dat, máme
v záloze tuto přímočarou a velmi snadno
interpretovatelnou formu prezentace.

Obr. 2. Pořadové statistiky jsou univerzálním řešením všech problémů.
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