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V úvodu této části se vrátíme k Fisherovu 
exaktnímu testu, který jsme v předcházejí-
cím díle představili jako užitečný příklad tzv. 
permutačního testování. Připomeňme, 
že tento test se po užívá k hodnocení zá-
vislosti (asoci ace) dvo u znaků nabývajících 
po uze dvo u hodnot. Typickým záznamem 
takových pozorování je 2 × 2 tabulka čet-
ností. Pokud zamítáme nulovo u hypotézu, 
znamená to, že kombinace hodnot obo u 
znaků nenastávají v sledované populaci ná-
hodně a je mezi nimi závislost. Význam Fis-
herova exaktního testu spočívá v tom, že při 
hodnocení nulové hypotézy pracuje přímo 
s kombinacemi naměřených hodnot, kte-
rým přiřazuje pravděpodobnost výskytu. 
Naměřená tabulka četností je tak simulačně 
přeskupována při zachování so učtu řádků 
a slo upců a v testu hledáme pravděpodob-
nost takových kombinací, které jso u ještě 
více vzdáleny od platnosti nulové hypotézy 
(jso u „extrémnější“) než tabulka pozoro-
vaná. Vlastní postup výpočtu opakuje pří-
klad 1, příklad 2 uvádí aplikaci na re álných 
klinických datech. 

Příklad 1
Fisherův exaktní test generuje náhod-
ným procesem vari anty pozorované ta-
bulky četností při zachování so učtů řádků 
i slo upců. V konečném výpočtu kalkuluje 
sumární pravděpodobnost výskytu vari ant, 
které jso u z hlediska platnosti nulové hy-
potézy ještě extrémnější než vari anta po-
zorovaná. Tato pravděpodobnost je záro-
veň pravděpodobností chyby I. druhu při 
zamítnutí nulové hypotézy o náhodném 
vztahu řádků a slo upců tabulky. Termí-
nem „extrémnější“ se rozumí vari anty ta-
bulky s menší pravděpodobností výskytu 
než vari anta pozorovaná, ať již v jednom 
směru (jednostranný test), nebo v obo u 
směrech (obo ustranný test). 
Pokud máme například ná-
sledující 2 × 2 kontingenční 
tabulku:
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XV. Vyzkoušejte zvláštní typ neparametrického testování hypotéz: 
permutační testy – obecné aplikace

Potom všechny vari anty tabulky při za-
chování so učtů řádků a slo upců jso u:

 
 
 
K nim příslušející pravděpodobnosti vý-

skytu pak:
 0,007 0,093 0,326 0,392 0,163 0,019

Světle zelené tabulky představují va-
ri anty extrémnější než pozorovaná tabulka, 
a to ve stejném směru (ve smyslu asymet-
ri e rozložení frekvencí v tabulce). „Stejný 
směr“ od pozorované tabulky je defi nován 
postupem, kdy od nejmenší hodnoty v po-
zorované tabulce odečteme 1 a dopočítáme 
zbývající četnosti buněk tabulky při zacho-
vání so učtů slo upců a řádků. Tmavě zelené 
tabulky potom představují extrémnější va-
ri anty v opačném směru. Extrémnější va-
ri anty poznáme pomocí pravděpodobnosti, 
která je menší nebo stejná jako pro pozo-
rovano u vari antu. Pravděpodobnosti těchto 
extrémních vari ant v testu sčítáme. 

Jednostranná p-hodnota pro 
hodnoceno u tabulku je tedy: 
0,326 + 0,093 + 0,007 = 0,426.
Obo ustranná p-hodnota je:
0,326 + 0,093 + 0,007 + 0,163 +
+ 0,019 = 0,608.

Pravděpodobnost čtvrté vari anty (0,392) 
není započítána, protože je méně ex-
trémní (je pravděpodobnější) než pozoro-
vaná tabulka.

Příklad 2
Jako příklad aplikace Fisherova exaktního 
testu uveďme příklad sledování počtu 
dvo u typů nežádo ucích příhod (NP I, NP II)
u dvo u různě léčených skupin paci entů 
(léčba 1 a léčba 2). Při celkových N = 10 po-
zorováních jsme u léčby 1 zachytili 5 NP 
typu I a 1 NP typu II. Léčba 2 vedla ve čtyřech 
případech k NP II, typ I nebyl pozorován.

 Léčba 1 Léčba 2 
NP I 5 0 Σ = 5
NP II 1 4 Σ = 5
 Σ = 6 Σ = 4 N = 10

Výpočet pravděpodobnosti P pro tuto 
tabulku pozorovaných četností je (viz též 
XIV. díl seri álu):

 

Pro ostatní možné tabulky je P:
  

 
 

Celková suma pravděpodobností výskytu 
různých vari ant tabulky je 1. Suma pravdě-
podobnosti menších nebo rovných hod-
notě P pozorované tabulky je 0,0476, což 
je hodnota menší než 0,05, a tedy indiku-
jící statisticky významný vztah mezi typem 
léčby a výskytem nežádo ucích událostí.

Pokračujme nyní dále obecnějším vy-
světlením permutačních (obecně randomi-
začních) testů. Tyto testy řadíme mezi tzv. 
neparametrické postupy, neboť nepracují 
s referenčními hodnotami te oreticky odvo-
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zených distribučních funkcí, jako to dělají 
„klasické“ testy parametrické, např. t-test. 
Klasickým postupem v testování hypotéz 
je výpočet hodnoty p odrážející platnost 
nulové hypotézy na základě te oretického 
rozdělení pravděpodobnosti odpovídají-
cího po užité testové statistice. V mnoha 
případech však rozdělení pravděpodob-
nosti testové statistiky není známo, důvo-
dem může být např. nedostatečná znalost 
problému nebo velmi malý počet dostup-
ných pozorování. Testování může v tako-
vém případě vést k mylným závěrům. Aby-
chom se vyhnuli nutným předpokladům 
o rozdělení testových statistik, můžeme 
pro odhad hodnoty p po užít tzv. permu-
tační algoritmus, jednu z metod, která 
pracuje s opakovaným vzorkováním na-
měřeného so uboru dat (dalšími příklady 
těchto metod jso u bo otstrap, jackknife 
a krosvalidace, o kterých se zmíníme na 
konci kapitoly).

Permutační testování je založeno na 
opakovaném vzorkování neboli náhod-
ném přeskupování naměřeného so uboru. 
Cílem je poso udit vari abilitu možných vý-
sledků, které lze získat náhodným přesku-
pováním pozorovaného so uboru dat. Při-
tom pracujeme stále po uze s naměřenými 
hodnotami. Celý postup získal jméno od 
pojmu permutace, což znamená přesku-
pení 1 až n čísel. Pro číselno u řadu 1 až 
6 můžeme jako příklad uvést následující 
permutace:
(1, 2, 3, 4, 5, 6)
(1, 3, 2, 4, 5, 6)
(4, 5, 2, 6, 1, 3)
(3, 2, 1, 6, 4, 5)

Jde ovšem po uze o malo u ukázku, neboť 
permutací n objektů je celkem n! („n fak-
tori ál“), v našem případě tedy 6! = 720.

Nyní je zřejmé, že v permutačních tes-
tech jde o náhodné přeskupení již naměře-
ných hodnot. Všechny permutace přitom 
považujeme za stejně pravděpodobné. 
Vlastní postup výpočtu potom provádíme 
tak, že z naměřených hodnot generu-
jeme všechny možné nebo velmi mnoho 
permutací a pro každo u vari antu spočí-
táme příslušno u testovo u statistiku. Prin-
cipem je srovnání pozorované testové sta-
tistiky s testovými statistikami, které takto 
získáváme te oreticky ze stejného dato-
vého so uboru, kde je přiřazení jednotlivých 
hodnot do studovaných skupin náhodné. 
Ještě jinak řečeno, permutační test je za-
ložen na výpočtu všech možných hodnot 

testové statistiky, které lze získat opakova-
ným přeskupením původního so uboru dat 
tak, že v rámci každého opakování zůstane 
zachován jak celkový počet pozorování 
(celkové N), tak počet pozorování náleží-
cích do jednotlivých skupin. Máme-li uspo-
řádání experimentu, v němž srovnáváme 
dvě skupiny hodnot (pozorování), pak si 
lze postup představit tak, že v jedné per-
mutaci náhodně vybereme N

1
 z celkového 

počtu N pozorovaných hodnot, které při-
řadíme do první skupiny, a zbylých N

2
 hod-

not budeme považovat za hodnoty nále-
žící do druhé skupiny (přitom vždy platí 
N

1
 + N

2
 = N).

Pro každé opakování tak dostaneme 
hodnotu testové statistiky (například sta-
tistiky t) t

1
, ..., t

M
 (celkem tedy M hodnot, 

kde M je celkový počet dostupných nebo 
provedených permutací). Výsledno u hod-
notu p pak vypočítáme jako podíl počtu 
testových statistik, které byly v absolutní 
hodnotě větší než původně pozorovaná 
testová statistika t (tedy představují extrém-
nější výsledky experimentu: m = |t

i
| ≥ t, kde 

i  = 1, ... ,M), ku celkovému počtu prove-
dených permutací (M) : p = m/ M.

Je patrné, že tento postup po uze ově-
řuje základní myšlenku, která je na pozadí 
každého statistického testu. Dosaženo u 
hladinu významnosti totiž vždy čteme jako 
pravděpodobnost, že právě naměřený vý-
sledek dostaneme náhodo u, když vybíráme 
z jednoho nebo více základních so uborů. 
Je-li tato pravděpodobnost malá, zamítáme 
nulovo u hypotézu a výsledek testu označu-
jeme za nenáhodný („významný“). Permu-
tační postup nedělá nic jiného, než že tuto 
skutečnost simuluje a generuje mnoho ta-
kových náhodných kombinací a hodnotí 
možné výstupy.

Je-li počet pozorovaných hodnot (N) příliš 
velký, je nemyslitelné provést všechny do-
stupné permutace (M). Potom pro výpočet 
uvažujeme po uze náhodno u podmnožinu 
permutací B, kde B < M. Velko u výhodo u 
permutačního testování je fakt, že jej lze 
po užít pro jako ukoliv testovo u statistiku. 
Tu si tedy můžeme vybrat tak, aby nejlépe 
vyhovovala našim potřebám, a zároveň se 
nemusíme starat o její rozdělení pravděpo-
dobnosti. Avšak i permutační testování má 
své limity. Zásadní podmínko u zde je před-
poklad zaměnitelnosti pozorovaných hod-
not v obo u srovnávaných so uborech. To ji-
nými slovy znamená, že by oba so ubory 
neměly mít výrazně odlišno u vari abilitu 
a experimentální uspořádání by náhod-

no u zaměnitelnost nemělo vylučovat. Jis-
to u nevýhodo u je pak omezená apliko-
vatelnost permutačních postupů na velmi 
malých datových so uborech, neboť při 
malém N (cca do 10) je poměrně malý také 
počet dostupných permutací, což může 
vést k nepřesnému odhadu hod noty p.
Příklad 3 přibližuje výpočet permutač-
ního testu na situ aci, kde je srovnávána 
hmotnost dvo u nestejně velkých sku-
pin paci entů. Interpretace výsledné hod-
noty p je zde stejná jako pro klasický 
t-test.

Ještě před cca 15 lety bylo nasazení per-
mutačního testování jisto u formo u úniku 
od matematických předpokladů parame-
trických testů. Avšak zcela nové využití 
pro permutační postupy nabídlo hodno-
cení dat molekulárně bi ologických expe-
rimentů, kde lze jen stěží předpokládat 
rozdělení naměřených hodnot, a po užití 
permutačního algoritmu na mnohoroz-
měrných datech zachovává při výpočtu 
jejich korelační strukturu. Aplikací per-
mutačních testů je také zajištěna kon-
trola vari ability měření v rámci jednoho 
experimentu.

Jak již bylo uvedeno výše, permutační 
algoritmy mají velmi blízko i k dalším po-
stupům založeným na opakovaném vzor-
kování původních dat. Dobře známo u 
a po užívano u metodo u je tzv. bo otstrap, 
který se většino u využívá pro odhady in-
tervalu spolehlivosti sledované charakte-
ristiky, jako je např. průměr nebo medi án. 
Bo otstrap je založen na principu opakova-
ného vzorkování s vracením, kdy pro vy-
tvoření nového vzorku dat může být každý 
prvek po užit více než jedno u, právě jed-
no u anebo není po užit vůbec (ovšem opět 
se zachováním celkové velikosti so uboru N
i velikosti jednotlivých skupin). Dalším 
obdobným postupem je tzv. jackknife, 
po užívaný též pro odhad vari ability měře-
ných charakteristik. Zde je opakovaný vý-
počet sledované charakteristiky prováděn 
vždy s vynecháním právě jednoho pozoro-
vání. Tento postup nám stejně jako v pří-
padě metody bo otstrap poskytuje před-
stavu o rozsahu hodnot, ve kterých se 
námi sledovaná charakteristika může po-
hybovat, budeme-li považovat naměřená 
data za reprezentativní vzorek z cílové 
populace. Třetí hojně po užívano u meto-
do u z tohoto spektra je tzv. krosvalidace, 
která je nejčastěji po užívána pro validaci 
stochastických modelů. Jejím principem 
je opakované rozdělení datového so uboru 
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na dvě části: trénovací (obvykle větší část 
původního so uboru) a testovací (obvykle 
menší část původního so uboru) s tím, že 
v první fázi je model vytvořen na trénova-
cím so uboru a následně je na testovacím 
so uboru zjištěna jeho chybovost, tedy ne-
přesnost odhadu cílové proměnné. Opa-
kování tohoto postupu nám dává užiteč-
no u informaci o možné chybovosti modelu 
při nasazení v re álné praxi.

Příklad 3.
Příklad výpočtu permutačního testu pro 
srovnání hmotnosti dvo u skupin paci entů.

Naměřená data:
Skupina A: N

1
 = 7, x–

1
 = 74,5 kg

Skupina B: N
2
 = 8, x–

2
 = 87,1 kg

Hodnota statistiky t (srovnání dvo u ne-
závislých výběrů): t = 2,900. Tomu odpoví-
dající hodnota p: p = 0,015.

•
•

Permutační test je zde po užitelný, neboť 
je splněna podmínka te oretické záměny 
subjektů. K subjektům budeme simu-
lačně přistupovat jako k jednomu základ-
nímu so uboru s celkovým N = 15 a jednot-
livé permutace pomoho u prověřit, zda je 
pozorovaná vari anta extrémní, tedy málo 
pravděpodobná při platnosti nulové hy-
potézy. Nulovo u hypotézo u zde je rov-
nost obo u skupin paci entů v průměrné 
hmotnosti.

Permutační test:
Pro výpočet je po užita statistika t pro 
dva nezávislé výběry.
Pro N

1
 = 7 a N

2
 = 8 je možno provést 

celkem 6 435 jedinečných permutací.
Ukázky možných permutací jso u uve deny
v tab. 1 i s výslednými hodno tami sta-
tistiky t.

Výpočet hodnoty p v permutačním 
testu:

Hodnota původní statistiky t = 2,900
Celkový počet provedených permutací 
M = 6 435
Počet permutací, pro které je absolutní
hodnota testové statistiky: 
|t

i
| ≥ t = 2,900, je zde m = 59 => 

=> p = m/ M = 59/ 6 435 = 0,009

Permutační test tedy potvrdil statistic-
ko u významnost rozdílu průměrné hmot-
nosti v obo u skupinách paci entů.

•

•

•

•
•

•

Tab. 1. Ukázky možných permutací.

Skupina  Hmotnost   Pořadí permutace
pacienta pacienta (kg) 1 2 3 … 6 435

A 91,5 A B B … B

A 79,8 B B B … B

A 66,2 A A A … A

A 70,7 A B A … B

A 63,4 B B A … A

A 77,7 B B B … A

A 71,9 B A A … B

B 83,9 A B A … A

B 92,2 B B A … A

B 85,4 A A B … A

B 99,2 A A B … A

B 77,5 A A A … B

B 80,8 B A B … B

B 91,6 B B B … B

B 86,2 B A B … B

Testová 
statistika 2,900 0,429 0,341 3,106 … 0,798
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