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PŘEHLEDNÝ REFERÁT

Rettův syndrom

Rett Syndrome

Souhrn
Rettův syndrom (RTT) je vážné X- vázané neurologické onemocnění, postihující především dívky. 
Patří mezi poruchy autistického spektra a je charakterizován zejména regresem psychomoto-
rického vývoje, ztrátou řeči, mikrocefalií, stereotypními pohyby rukou a záchvaty. Většina pří-
padů RTT je způsobena de novo mutacemi v genu pro metyl-CpG-vazebný protein 2 (MECP2) 
a jen velmi ojediněle se jedná o familiární výskyt. Produkt tohoto genu, MeCP2 protein, se-
hrává důležitou roli v chromatinové remodelaci, regulaci genové exprese a také se účastní 
modulace RNA sestřihu. Ně kte ré případy atypického RTT mohou být způsobeny mutacemi 
v dalších genech, např. CDKL5, FOXG1 nebo NTNG1. Tento přehledový článek uvádí souhrn 
současných poznatků o Rettovu syndromu, klinickém obrazu pacientů v jednotlivých stadiích, 
molekulární podstatě, diagnostických kritériích, terapeutických přístupech a o možnostech 
DNA diagnostiky.

Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder affecting almost exclu-
sively girls. It belongs to the family of autistic spectrum disorders, and it is characterized by 
psychomotor regression, loss of acquired speech, microcephaly, repetitive stereotypic hand 
movements, and seizures. Most of RTT cases are caused by de novo mutations in the gene 
for the methyl- CpG-binding protein 2 (MECP2), and familial cases are extremely rare. The 
MECP2 gene product plays an important role in chromatin remodeling, regulation of gene ex-
pression and is also involved in RNA splicing. Some atypical RTT cases are caused by mutations 
in other genes, such as CDKL5, FOXG1 or NTNG1. In this paper we give an overview of RTT, its 
clinical aspects, molecular basis, diagnostic criteria, medical management and DNA diagnosis.
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Úvod
Rettův syndrom (RTT, MIM #312750, 
MKN- 10 F84.2, DSM- IV 299.8) postihuje 
téměř výlučně dívky, u kterých je s preva-
lencí 1 : 10 000 jednou z nejčastějších příčin 
mentální retardace a vývojového regresu. 
Tento syndrom byl v německé literatuře 
poprvé popsán již v roce 1966 vídeňským 
pediatrem dr. Andreasem Rettem [1]. Do 
širšího lékařského povědomí se zapsal až 
o mnoho let později, po uveřejnění prv-
ního sdělení v anglickém jazyce švédským 
neurologem dr. Hagbergem a jeho ko-
legy [2]. Téměř úplná prevalence sporadic-
kých případů RTT (více než 99%) značně 
ztížila vědecké bádání směrující k určení 
způsobu dědičnosti a k identifikaci odpo-
vědného genu. Teprve v roce 1999 byly 
u postižených pacientek nalezeny kau-
zální mutace v MECP2 genu lokalizova-
ném na chromozomu X, jehož produktem 
je transkripční represor metyl-CpG-va-
zebný protein 2 (MeCP2) [3]. RTT se tak 
stal prvním onemocněním ve skupině per-
vazivních vývojových poruch (neboli po-
ruch autistického spektra), u kterého je již 
známa genetická příčina. Do této skupiny 
patří i dětský autizmus, se kterým bývá RTT 
kvůli podobným příznakům někdy zamě-
ňován. Po stránce klinické i molekulární 
je RTT považován za prototyp pro gene-
tické, molekulární a neurobio logické stu-
dium onemocnění spojených s poruchou 
neurologického vývoje.

Klinický obraz 
Rettova syndromu
Klasická forma RTT je charakterizována spe-
cifickým vývojovým profilem (obr. 1). Klinická 
diagnóza je postavena na definovaných kri-
tériích [4], která jsou shrnuta v tab. 1.

Původně se v literatuře uvádělo, že první 
příznaky RTT se objevují až po několika-
měsíčním bezpříznakovém období nor-
málního psychomotorického vývoje. Kli-
nické studie za posledních několik let 
však prokázaly, že nepatrné abnormality 
se v mnoha případech vyskytují již v prv-
ních šesti měsících po narození. Dítě může 
mírně zaostávat v motorickém vývoji (např. 
přetáčení na bříško, držení hlavičky), i když 
celkově se jeho zdravotní stav jeví v normě. 
Rodiče často popisují, že jejich dítě je pří-
liš klidné až flegmatické, nepláče a většinu 
dne prospí. Pozorným sledováním je také 
možné již v tomto období pozorovat mírné 
problémy s jemnou motorikou a nadměr-
nou aktivitu rukou a prstů, v extrémech až 

náznaky repetitivních pohybů [5– 7]. Další 
vývoj klinických příznaků RTT lze rozdělit 
do čtyř stadií.

1. stadium
Po 6– 18 měsících normálního nebo zdán-
livě normálního psychomotorického vý-

Obr. 1. Doba nástupu klinických příznaků a nejčastější projevy RTT [98].

Tab. 1. Revidována diagnostická kritéria pro klasický Rettův syndrom [4].

Základní kritéria

1. Normální nebo zdánlivě normální prenatální a perinatální vývoj
2.  Psychomotorický vývoj v prvních šesti měsících normální nebo může být od narození 

opožděn
3. Normální obvod hlavy při narození
4. Postnatální zpomalení růstu hlavy a získaná mikrocefalie (ve většině případů)
5.  Ztráta dosažených dovedností v oblasti jemné motoriky (účelové používání rukou) ve 

věku 6–30 měsíců
6.  Stereotypní pohyby rukou (připomínající mytí, ždímání, tleskání, opakované vkládání 

rukou do úst apod.)
7.  Porucha sociálních interakcí, ztráta řeči a komunikačních dovedností, kognitivní postižení
8. Nejistá chůze o široké bázi nebo úplná ztráta dovednosti, dyspraxie/apraxie

Podpůrná kritéria

1.  Nepravidelnosti dýchání (hyperventilace, zadržování dechu, polykání vzduchu, ná-
silné vydechování vzduchu); ve spánku mizí

2. Bruxizmus
3. Poruchy spánku od raného dětství
4. Abnormální svalový tonus, přidružená svalová atrofie a dystonie
5. Poruchy periferního překrvení
6. Progresivní skolióza nebo kyfóza
7. Růstová retardace
8. Drobné, hypotrofické, studené nohy; malé, útlé ruce

Vylučovací kritéria

1. Organomegálie nebo jiné příznaky střádavého onemocnění
2. Retinopatie, optická atrofie nebo katarakta
3. Perinatální nebo postnatální poškození mozku
4. Prokázáno metabolické nebo progresivní neurologické onemocnění
5. Neurologické onemocnění v důsledků silné infekce nebo poranění hlavy
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voje nastává fáze jeho zpomalení až zasta-
vení. Ve většině případů se zpomaluje růst 
hlavy, což vede k mikrocefalii. Velmi častá 
je přidružená růstová retardace, ztráta na 
váze a svalová hypotonie.

2. stadium
Poté nastává fáze vývojového regresu, kdy 
postižené dítě ztrácí dosažené dovednosti. 
Jemná motorika rukou se částečně nebo 
úplně vytrácí a je nahrazena stereotypními 
pohyby rukou, které patří k typickým kli-
nickým znakům RTT. Připomínají mytí, ždí-
mání, tleskání, tření jedné ruky o druhou, 
opakované vkládání do úst, olizování a cu-
cání prstů apod. Patrné je i zhoršení soci-
álních interakcí, vymizení očního kontaktu, 
nezájem o okolí, zastavení vývoje řeči nebo 
její úplná ztráta. Dítě může vykazovat pře-
citlivělost nebo podrážděnost se sklonem 
k automutilaci [8]. V tomto stadiu mohou 
pacientky s RTT někdy připomínat případy 
dětského autizmu. Zhoršování po mentální 
a kognitivní stránce provázejí další poruchy 
motoriky; špatná koordinace pohybů, ataxie 
až apraxie. Chůze je nejistá, o široké bázi, 
často jen s oporou a v mnohých případech 
pacientky přestávají chodit úplně. K prvním 
příznakům poruchy autonomních funkcí 
patří ataky hyperventilace a jiné dýchací 

anomálie (zrychlené dýchání, zadržování 
dechu, apnea, polykání vzduchu, prudké vy-
dechování) vyskytující se u většiny případů. 
Nástup těchto příznaků nastává kolem dru-
hého roku s přetrváváním do dospělosti. Ve 
spánku tyto anomálie pozorovány nejsou 
[9]. Přestože epilepsie není na seznamu di-
agnostických kritérií, záchvaty, od farmako-
logicky dobře kontrolovatelných až po těžké 
a nezvladatelné, se vyskytují u 50– 90 % pa-
cientek. Nejčastěji se jedná o generalizo-
vané záchvaty tonicko-klonické nebo sim-
plexní parciální [10]. S postupujícím věkem 
mají tendenci slábnout a v dospělosti již 
obyčejně nepředstavují zásadní problém.

3. stadium
Po poměrně dramatickém stadiu psycho-
motorického regresu nastává stadium sta-
cionární, ve kterém se stav pacientek zdá 
být stabilizován. Mezi 5. až 10. rokem 
často dochází ke zlepšení po stránce so-
ciální a komunikační, zejména v neverbální 
komunikaci, očním a tělesném kontaktu. 
Záchvaty a motorické postižení však na-
dále přetrvávají [9].

4. stadium
V poslední fázi, která přetrvává až do do-
spělosti, se motorické funkce většinou 

pozvolna opět zhoršují, přidává se hy-
pertonie, rigidita, dystonie a progresivní 
skolióza. Mnohé pacientky úplně ztrácejí 
schopnost mobility a jsou připoutány na 
invalidní vozík. Ve vyšším věku se mohou 
vyskytnout prvky parkinsonizmu. Přidružují 
se také další poruchy autonomních funkcí, 
např. hypotrofické, studené, někdy až na-
modralé nohy a ruce, zácpa, orofarynge-
ální dysfunkce a srdeční arytmie (bradykar-
die, tachykardie, prodloužený QT interval) 
[11,12]. Pozorovány jsou také behaviorální 
poruchy, jako noční smích a křik, změny 
nálad, pocity úzkosti a neklidu, vyvolané 
např. změnou prostředí apod. [13]. Přes-
tože se pacientky s RTT mohou dožít střed-
ního i vyššího věku, mortalita je u nich 
v průměru vyšší než u zdravých osob stej-
ného věku. Přibližně 25 % úmrtí je náhlých 
a nevysvětlených. Jejich příčinou mohou 
být právě již zmíněné kardiologické pro-
blémy a jiné poruchy autonomní regulace 
[14– 16].

Bylo popsáno také několik atypických 
forem, u kterých je průběh mírnější nebo 
naopak těžší než u klasické formy RTT. 
U tzv. forme fruste varianty je nástup pří-
znaků pozdější, a to mezi 1. až 3. rokem, 
jemná motorika rukou může zůstat po-
měrně dobře zachována, pouze s minimál-
ními stereotypními pohyby. U dalších pa-
cientek zůstává částečně zachována řeč, 
i když používání jednotlivých slov nemusí 
být v kontextu, tzv. preserved speech va-
rianta. Tyto pacientky nemívají mikrocefa-
lii a často trpí nadváhou [17]. Těžký průběh 
má kongenitální forma RTT, u které úplně 
chybí období zdánlivě normálního psycho-
motorického vývoje a také varianta, u které 
záchvaty nastupují již v průběhu prvních 
šesti měsíců, tzv. early onset seizure vari-
anta [18]. Diagnostická kritéria pro aty-
pické formy RTT jsou shrnuty v tab. 2.

Nástup a závažnost příznaků i celkový 
průběh onemocnění se u jednotlivých pa-
cientek značně liší, což značně ztěžuje 
stanovení správné diagnózy. Kvůli ztrátě 
komunikačních dovedností a sociálních in-
terakcí v stadiu regresu mohou být dívky 
s RTT mylně diagnostikovány jako případy 
dětského autizmu. S Angelmanovým syn-
dromem má RTT společný výskyt mentální 
retardace, záchvatů, ataxie a mikrocefa-
lie. U starších pacientek, u kterých domi-
nuje spasticita, těžké postižení motoric-
kých funkcí a hluboká mentální retardace, 
je stanovení diagnózy ještě náročnější. 
Pokud není znám průběh jejich psychomo-

Tab. 2. Revidovaná diagnostická kritéria pro atypické formy Rettova syn-
dromu [4]. Pro stanovení diagnózy musí být splněny nejméně tři základní 
kritéria a pět podpůrných kritérií.

Základní kritéria

1. Absence nebo redukce cíleného používání rukou
2. Redukce nebo ztráta řeči
3. Stereotypní pohyby rukou
4. Redukce nebo ztráta komunikačních dovedností
5. Zpomalení růstu hlavy od prvního roku života
6.  Průběh onemocnění připomínající klasický RTT: regres ve vývoji s následným zlepše-

ním sociálních interakcí, v kontrastu s progredujícím motorickým postižením

Podpůrná kritéria

1. Nepravidelnosti dýchání
2. Polykání vzduchu
3. Bruxizmus
4. Abnormální pohyby
5. Skolióza/kyfóza
6. Amyotrofie dolních končetin
7. Studené, bledé nohy, obyčejně hypotrofické
8. Poruchy spánku včetně nočního křiku
9. Nevyprovokovaný smích a křik
10. Snížený práh bolesti
11. Intenzivní oční kontakt
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torického vývoje v raném dětství, nezřídka 
bývají tyto případy uzavřeny jako mozková 
obrna.

Neuropatologie 
Rettova syndromu
RTT byl původně považován za progresivní 
neurodegenerativní onemocnění. Tato hy-
potéza byla brzy vyvrácena, neboť u pa-
cientek nebyla prokázána mozková atro-
fie, odumírání nervových buněk, zánět ani 
glióza. Makroskopicky se mozek pacientek 
jeví bez zřetelných patologických změn 
[19,20]. Nejvýraznější morfologickou ab-
normalitou vzhledem ke zdravým věkově 
odpovídajícím kontrolám je jeho menší 
hmotnost [21], pravděpodobně v dů-
sledku menších neuronů, především v ob-
lasti kortexu, talamu, substancia nigra, ba-
zálních ganglií, amygdaly a hipokampu 
[22,23]. Také magnetická rezonance pro-
kazuje snížený objem mozku v ně kte rých 
kortikálních oblastech [20]. Morfologie sa-
motných neuronů ukazuje, že dendrity py-
ramidálních neuronů ve frontální, tem-
porální a motorické oblasti jsou méně 
rozvětveny, než je obvyklé, s menším po-
čtem krátkých dendritických výrůstků, 
avšak bez zjevných abnormalit axonů, což 
svědčí spíše o porušené neuronální matu-

raci než o neurodegenerativním onemoc-
nění [24,25].

Definovat jednotné neurochemické 
změny je u RTT problematické. Abnorma-
lity byly pozorovány ve většině systémů, 
žádnou však nelze považovat za pato-
gnomickou, jelikož se nevyskytují u všech 
pacientek s RTT, a výsledky měření jsou 
do značné míry ovlivněny jak věkem pa-
cientek, tak závažností jejich klinických 
příznaků [26]. Podle různých studií byly 
v mozkomíšním moku naměřeny snížené 
hladiny acetylcholinu [27], dopaminu [28], 
substance P [29] a nervového růstového 
faktoru [30], naopak zvýšené byly hladiny 
glutamátu [31]. Studium změn v neuro-
transmiterech a trofických faktorech, ač-
koliv dosud bez jednoznačných výsledků, 
může sehrát důležitou roli při vývoji nové 
podpůrné terapie RTT.

Neurofyziologické studie ukazují, že 
k patofyziologii onemocnění přispívá cen-
trální i autonomní nervový systém. Nic-
méně kvůli různorodosti nálezů u jednot-
livých pacientek a absenci jednoznačných 
patognomických znaků nemají základní 
zobrazovací a elektrofyziologické metody 
rozhodující diagnostický význam. Pozi-
tronová emisní tomografie i jednofoto-
nová emisní počítačová tomografie pro-

kazují snížený průtok krve cerebrálním 
řečištěm, především ve frontálních regio-
nech [32– 34]. Poruchy autonomního ner-
vového systému signalizuje zvýšená inci-
dence dlouhých QT intervalů a snížená 
variabilita tepové frekvence [16,35]. Ná-
lezy evokovaných potenciálů a elektroreti-
nogramů bývají u mladších dívek s RTT (do 
15 let) normální [36]. U starších pacientek 
(10– 22 let) s těžkým motorickým postiže-
ním byly pozorovány opožděné odpovědi 
somatosenzorických evokovaných poten-
ciálů, ale elektromyografické a neurogra-
fické analýzy u nich neprokázaly závažnou 
poruchu kořenů míšních nervů ani peri-
ferních nervových vláken [37,38]. Vzhle-
dem k častému výskytu záchvatů bývají 
pacienti s pervazivními vývojovými poru-
chami běžně podrobováni EEG vyšetření 
[39– 41]. EEG bývá u pacientek s RTT ab-
normální a jsou pozorovány i jisté charak-
teristické EEG nálezy. Jedná se především 
o převažující théta aktivitu v bdělém stavu 
a opožděný EEG obraz, který neodpovídá 
věku pacientky. Epileptiformní abnorma-
lity zahrnují centrotemporální hroty anebo 
ostré vlny, později převládají multifokální 
hroty anebo ostré vlny a generalizované 
SW komplexy [38]. EEG změny u pacien-
tek s RTT sice nejsou považovány za di-
agnostický znak, protože se do značné 
míry liší v jednotlivých případech, i u téže 
nemocné v různých stadiích onemoc-
nění, nicméně mají význam pro nasazení 
a úpravu antikonvulzivní terapie [42]. Ana-
lýza EEG stejně jako ostatní neurofyziolo-
gická vyšetření mají kromě přínosu pro ob-
jasnění patofyziologie RTT význam hlavně 
pro celkové zhodnocení zdravotního stavu 
nemocných a případné odhalení jiné pří-
činy neurologických příznaků.

MECP2 gen a MeCP2 protein
Molekulárně genetická podstata RTT byla 
dlouhá léta předmětem intenzivního vý-
zkumu. Jako nejpravděpodobnější se uka-
zovala hypotéza, že se jedná o domi-
nantně dědičné X- vázané onemocnění 
a kauzální mutace jsou v homozygotní 
nebo hemizygotní formě, tedy u mužů, le-
tální. Pro odhalení genetické příčiny RTT 
byly klíčové případy familiárního výskytu 
onemocnění (postižené sestry nebo dvo-
jice teta a neteř), přestože jsou jinak velmi 
vzácné. Vazebnými analýzami genetických 
markerů a systematickým skríningem kan-
didátních genů se nakonec podařilo na 
dlouhém raménku chromozomu X identi-

Obr. 2. Struktura MECP2 genu a obě izoformy MeCP2 proteinu [97].

a) struktura MECP2 genu na úrovni genomové DNA.
b)  mRNA vznikající alternativním sestřihem. MECP2_e1 mRNA obsahuje exony 1, 3 a 4, 

MECP2_e2 mRNA obsahuje všechny čtyři exony a exon 1 je součástí 5’ nepřekládané 
oblasti.

c)  srovnání N-terminální části obou izoforem MeCP2 proteinu indikující rozdíly v dů-
sledku translace exonu 1, resp. exonu 2.

Šipky označují začátek translace (iniciační kodon ATG)
MBD: metyl- CpG- vazebná doména, TRD: represorová doména, C- ter: C-terminální 
doména
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fikovat gen MECP2 jako kauzální gen RTT 
[3].

MECP2 gen je dlouhý 76 kb a má čtyři 
exony. Jeho produktem je ubikvitérně ex-
primovaný jaderný protein, metyl-CpG-va-
zební protein 2 (MeCP2), který se vyskytuje 
ve dvou izoformách: MeCP2_e1 (kódo-
vána exony 1, 3 a 4) a MeCP2_e2 (kódo-
vána exony 2, 3 a 4). Obě izoformy mají 
identické hlavní funkční domény a liší se 
jen N-terminální sekvencí (obr. 2). Zajímavé 
je, že v exonu 2 dosud nebyla popsána 
žádná mutace a exprese MeCP2_e2 je 
v mozku asi desetkrát nižší než exprese 
MeCP2_e1, což svědčí o dominantním po-
stavení izoformy MeCP2_e1 v patogenezi 
RTT [43,44].

MeCP2 protein má tři základní funkční 
domény a dvě signální sekvence pro 
jadernou lokalizaci proteinu (NLS). 
Metyl- CpG- vazebná doména (MBD) se 
specificky váže na symetricky metylované 

CpG dinukleotidy DNA [45,46], ale za jis-
tých podmínek také na nemetylovanou 
DNA [47]. Druhou funkční doménou je re-
presorová doména (TRD), která odpovídá 
především za represi transkripce. Asociuje 
s mnoha proteinovými faktory za vzniku 
represorového nebo chromatin remodulu-
jícího komplexu [48– 51], ale podle nových 
výzkumů se může uplatnit i při alternativ-
ním sestřihu RNA [52,53]. Funkce C-ter-
minální domény není dosud podrobně 
prozkoumána, popsané mutace v této do-
méně nicméně svědčí o jejím významu pro 
správné fungování MeCP2. Doména napo-
máhá při vazbě MeCP2 proteinu k neme-
tylované DNA, při sestřihu RNA a asociuje 
i s ně kte rými neuronálně specifickými fak-
tory [54].

Jak již bylo řečeno, MeCP2 je expri-
mován ve všech tkáních a uvnitř buněk 
je lokalizován v jádře. Hladina exprese 
MeCP2 je relativně nejvyšší v mozku, kde 

koreluje s maturací neuronů a synaptoge-
nezí. Předpokládá se, že MeCP2 sehrává 
důležitou roli v modulaci neuronální akti-
vity anebo plasticity [55,56]. To by mohlo 
vysvětlit, proč je mozek primárně postiže-
ným orgánem u pacientek s RTT. MeCP2 má 
klíčovou úlohu v regulaci genové exprese 
a také funguje jako mediátor komplexní 
chromatinové remodelace. Původně byl 
považován za globální transkripční re-
presor [51], který se MBD váže na mety-
lované CpG dinukleotidy v promotorech 
cílových genů a prostřednictvím své TRD 
váže korepresor Sin3A a deacetylázy his-
tonů 1 a 2 (HDAC). Deacetylací histonů 
nukleozomů se mění chromatinová struk-
tura na heterochromatin, který je nepří-
stupný pro transkripční mašinérii, a do-
chází tak k transkripční represi (obr. 3) 
[49,50]. Kromě Sin3A a HDAC bylo poz-
ději objeveno mnoho dalších faktorů, se 
kterými MeCP2 asociuje, a účastní se tak 
nejen modulace genové exprese, ale také 
RNA sestřihu a pravděpodobně i dalších 
buněčných procesů. Biologický význam 
většiny těchto interakcí není zatím zcela 
objasněn, nicméně jejich existence je dů-
kazem toho, že funkce MeCP2 je mnohem 
komplexnější, než se původně předpoklá-
dalo. Ně kte ré cílové geny, jejichž expresi 
MeCP2 kontroluje, již byly identifikovány 
a podle očekávání jsou mezi nimi i geny, 
jejichž produkty se účastní neuronálního 
vývoje a signalizace (tab. 3). Identifikace 
dalších cílových genů a funkcí MeCP2 pro-
teinu je klíčová pro pochopení patogeneze 
RTT a vývoj účinné terapie.

Mutace v MECP2 genu
V MECP2 genu bylo dosud popsáno více 
než 300 různých patogenních mutací 
(www.hgmd.cf.ac.uk), které jsou identifi-
kovány až u 90– 95 % pacientek s klasic-
kým RTT. Frekvence mutací u atypických 
variant je o mnoho nižší, jen 20– 50 % 
[57]. Spektrum mutací je velmi široké; nej-
častěji se jedná o bodové mutace typu mis-
sense a nonsense, z nichž osm je výrazně 
prevalentních (až 70 % případů), dále jsou 
to menší i rozsáhlejší delece, duplikace, in-
zerce a komplexní přestavby. Většina po-
psaných mutací způsobuje částečnou nebo 
úplnou ztrátu funkce MeCP2 proteinu 
jako modulátoru genové exprese. Mutace 
lokalizovány mimo základní funkční do-
mény MBD a TRD mají nejpravděpodob-
něji negativní vliv na sekundární a terciární 
strukturu proteinu, jeho stabilitu a trans-

Obr. 3. Zjednodušené schéma funkce MeCP2 proteinu.

a)  MeCP2 interaguje s metylovanými CpG dinukleotidy v promotorové oblasti cílového 
genu a na něj se vážou další faktory, např. HDAC1, HDAC 2 a korepresor Sin3A. HDAC 
deacetylují histony a chromatin se dostává do kondenzované konformace nepřístupné 
pro transkripční mašinérii. Translace cílových genů neprobíhá. Nefunkční MeCP2 ne-
vytváří represorový komplex, histony zůstávají acetylovány, chromatin je dekondenzo-
vaný a přístupný pro transkripční faktory. Probíhá transkripce cílových genů.

b)  Nefunkční MeCP2 není schopen vazby na DNA a/ nebo vytváření represorového 
komplexu.
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port do buněčného jádra nebo jeho in-
terakce s jinými kofaktory. Jelikož dosud 
nejsou známy všechny funkce MeCP2 pro-
teinu, je mnohokrát velice těžké posoudit 
funkční dopad ně kte rých mutací (přede-
vším typu missense).

MECP2 mutace vznikají téměř vždy de 
novo, většinou v paternální germinální linii 
[58,59]. Příčinou je pravděpodobně vysoký 
stupeň CpG metylace v mužské germinální 
linii a také velký počet buněčných dělení 
v průběhu spermatogeneze, které mohou 
vést ke vzniku de novo mutací. Familiární 
případy RTT bývají téměř výlučně způ-
sobeny mutacemi zděděnými po zdravé 
nebo velmi mírně postižené matce. Tyto 
ženy mají buď gonadální mozaicizmus pro 
MECP2 mutaci (tj. produkují vajíčka s mu-
tací i bez ní), nebo jsou přenašečkami so-
matické mutace, která se u nich díky pří-
znivé inaktivaci chromozomu X (XCI) na 
fenotypu neprojevila [60].

V uplynulých letech bylo publikováno 
velké množství studií zabývajících se závaž-
ností klinických příznaků ve vztahu k typu 
MECP2 mutací u pacientek s RTT. Ačkoliv 
výsledky těchto studií nejsou zcela konzis-
tentní, všeobecně platí, že:
1.  mutace postihující NLS jsou mnohem 

závažnější než ty, které NLS zachovávají;
2.  delece na konci kódující oblasti (v C-ter-

minální doméně) jsou nejméně závažné;
3.  nonsense mutace a delece na začátku 

kódující sekvence jsou závažnější než 
missense mutace [61– 63].

Jistá asociace mezi genotypem a fe-
notypem byla pozorována i u ně kte-
rých konkrétních mutací, i když se indivi-
duální klinický obraz pacientek se stejnou 
MECP2 mutací nezřídka podstatně liší 
[64,65]. Závažnost klinických příznaků 
může ovlivňovat především rozdílná XCI, 
která nicméně nevysvětluje všechny roz-
díly v manifestaci onemocnění [66,67]. Je 
proto možné, že průběh onemocnění mo-
dulují i další faktory. Možnými kandidáty 
jsou upstream regulátory exprese samot-
ného MECP2 genu, cílové geny kontrolo-
vané MeCP2 proteinem a v úvahu přichá-
zejí také geny, jejichž produkty se účastní 
vývoje a diferenciace CNS a modulace 
neuronálních funkcí.

Fenotypové spektrum MECP2 mutací se 
neomezuje jen na dívky s RTT. Diskutova-
ným tématem jsou především MECP2 mu-
tace u mužů, které byly původně považo-
vány za prenatálně letální, později však 
byly nalezeny i u chlapců s těžkou neo-
natální encefalopatií a mentální retardací. 
Takto postižení chlapci se však nedožívají 
více než 1– 2 let. Klasický RTT se u mužů 
celkově manifestuje jen velmi zřídka, a to 
u pacientů s Klinefelterovým syndromem 
(47, XXY) nebo se somatickým mozaiciz-
mem pro MECP2 mutaci. Přítomnost nad-
bytečného X chromozomu v každé jejich 
buňce, resp. podíl buněk s X chromozo-
mem bez mutovaného MECP2 genu, na-
vozuje situaci podobnou u žen a s tím pa-
trně související i stejný klinický fenotyp 
[68,69]. Dále byly mutace v MECP2 genu 

nalezeny i u pacientů s Angelmanovým 
syndromem, X- vázanou mentální retar-
dací, autizmem, lehkou mentální retardací 
nebo jen mírnými psychickými či motoric-
kými problémy. U těchto klinických jed-
notek je spektrum mutací MECP2 genu 
častokrát jiné než u RTT a frekvence pod-
statně nižší [70– 73].

Další kauzální geny 
u Rettova syndromu
Nepřítomnost mutace v MECP2 genu ně-
kte rých pacientek RTT vedla k úvaze, že 
existují další kauzální geny, jejichž mutace 
vedou k podobnému fenotypu jako mu-
tace v MECP2.

U ně kte rých pacientek s atypickým RTT, 
u kterých se záchvaty objevují již v prvních 
šesti měsících po narození, byly nalezeny 
mutace v genu CDKL5 ležícím na chromo-
zomu X [74– 77]. Kromě dívek s atypickým 
RTT se CDKL5 mutace vyskytují i u ně kte-
rých případů X- vázaného Westova syn-
dromu (ISSX2, Infantile spasm syndrome 
X-linked type 2) [78], X- vázané retinoschisis 
s epilepsií [79], autistů a pacientů s neurolo-
gickými poruchami a epilepsií [77]. Produk-
tem CDKL5 genu je protein vykazující sek-
venční homologii se serin/ treonin kinázami 
(odtud pochází jeho starší název serin/ thre-
onin kinase 9, STK9) a pravděpodobně pa-
třící do rodiny cyklin-dependentních kináz 
[80]. Ačkoliv funkce CDKL5 (Cyclin-Depen-
dent Kinase- Like 5) proteinu zatím není 
známa, překrývající se fenotyp pacientek 
s mutacemi v MECP2 a CDKL5 genech vede 
k teorii, že tyto dva proteiny spolupracují 
na stejném procesu. Nejenže CDKL5 fosfo-
ryluje MeCP2, a tím pravděpodobně mo-
duluje jeho funkci [81], ale také expresní 
profil CDKL5 je v průběhu maturace neu-
ronů a synaptogeneze velmi podobný 
profilu exprese MeCP2 [74,82]. Mutace 
v CDKL5 genu vznikají většinou de novo 
a jejich frekvence je nízká. Pokud však kli-
nické příznaky jednoznačně svědčí pro aty-
pický RTT s včasnými záchvaty, mělo by se 
rozhodně uvažovat o analýze tohoto genu.

Kandidátem na pozici dalšího kauzál-
ního genu u RTT je gen FOXG1, který 
leží na chromozomu 14 a kóduje pro-
tein FoxG1 (původně brain factor 1, BF- 1). 
Nedávno bylo popsáno několik případů 
RTT s mutacemi v tomto genu [83– 85]. 
FoxG1 protein je transkripční faktor, který 
je exprimován pouze v mozku a varlatech, 
a sehrává důležitou roli především v prv-
ních stadiích neuronálního vývoje [86,87].

Tab. 3. Některé cílové geny MeCP2 proteinu [9,60].

Gen Funkce genového produktu

BDNF neuronální vývoj, plasticita a přežívaní neuronů, paměť a učení
Crh produkce kortikotropinu
DLX5  neuronální transkripční faktor
 produkce enzymů, které syntetizují GABA
Fkbp5 hormonální signalizace
FXYD1  transmembránový protein, který moduluje Na+/K+-ATPázovou aktivitu a 

tím kontroluje excitabilitu buněk
GABRB3 GABA-A receptor
ID1-3 neuronální tranaskripční faktory
IGFBP3 hormonální signalizace
LSN  povrchový protein hematopoetických buněk, funkce při signální transdukci 

a buněčné adhesi
Sgk1 hormonální signalizace
UBE3A ubiquitin ligáza
Uqcrc1 komponent mitochondriálního dýchacího řetězce
xHairy2a neuronální represor (Xenopus laevis)
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tody mají své limity a fenotyp podobný RTT 
může být také způsoben mutacemi v ji-
ných, dosud netestovaných genech. Nic-
méně DNA diagnostika RTT má velký vý-
znam při definitivním potvrzení diagnózy 
a při diagnostice klinicky nejednoznač-
ných případů, např. u pacientek s atypic-
kým RTT, u velmi mladých pacientek, které 
ještě neprošly jednotlivými stadii, a není 
tak možné sledovat typický průběh RTT 
nebo naopak u dospělých a starších pa-
cientek. Včasné a přesné stanovení dia-
gnózy umožňuje předvídat další vývoj 
onemocnění a plánovat tak preventivní 
a podpůrnou terapii. Ačkoliv je riziko re-
kurence v rodině postižených velmi nízké 
(méně než 1 %), je možné provést skrí-
ning na mutaci, která byla nalezena u pro-
banda i u dalších členů rodiny (zejména 
ženského pohlaví), včetně prenatální 
diagnostiky.

Zkratky
3`UTR 3`nepřekládaná oblast
CDKL5 cyclin-dependent kinase-like 5 protein
HDAC deacetylázy histonů
MBD metyl-CpG-vazebná doména
MECP2 gen pro metyl-CpG-vazební protein 2
MeCP2 metyl-CpG-vazební protein 2
MLPA  Multiplex Ligation- dependent Probe 

Amplification
NLS nuclear localization signal
RTT Rettův syndrom
STK9 serin/ threnonin kinase 9
TRD  represorová doména (Transcriptional 

Repression Domain)
XCI inaktivace chromozomu X
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vené diagnózy molekulárně genetickými 
metodami. Vzhledem k délce nepřeklá-
daných a nekódujících sekvencí (3` nepře-
kládaná oblast, 3`UTR, MECP2 genu patří 
k nejdelším v lidském genomu), jsou ru-
tinně analyzovány jen kódující oblasti 
a přilehlé intronové sekvence potřebné 
pro správný sestřih mRNA. Základní mu-
tační analýza je prováděna sekvenová-
ním amplifikovaných úseků. Rozsáhlé de-
lece (jednoho nebo více exonů i celého 
MECP2 genu), které se vyskytují přibližně 
u 4– 8 % pacientek s RTT, nejsou klasickými 
molekulárně genetickými metodami zalo-
ženými na PCR odhaleny. Tyto mutace je 
možné identifikovat hybridizačními meto-
dami, např. MLPA (Multiplex Ligation- De-
pendent Probe Amplification). Takovým 
kombinovaným přístupem je možné odha-
lit mutaci v MECP2 až u 90– 95 % pacien-
tek s klasickou formou RTT a u 20– 50 % 
pacientek s atypickými variantami. Ostatní 
případy mohou být způsobeny mutacemi 
v nekódujících, ale funkčně důležitých 
oblastech MECP2 genu, např. v promo-
toru nebo konzervovaných úsecích 3`UTR. 
U atypických variant se vzhledem k va-
riabilnímu fenotypu a nízkému procentu 
případů s kauzální mutací v MECP2 genu 
předpokládala a v posledních letech také 
potvrdila genetická heterogenita, tedy 
existence dalších odpovědných genů. 
Dosud byly identifikovány tři takové geny 
(CDKL5, FOXG1 a NTNG1), ale jejich počet 
se pravděpodobně ještě rozroste. V sou-
časné době je v České republice na Kli-
nice dětského a dorostového lékařství 
1. LF UK a VFN v Praze dostupná DNA dia-
gnostika RTT založena na mutační ana-
lýze MECP2 genu [99,100] a nově i genu 
CDKL5. Riziková pacientka, vhodná pro 
mutační analýzu MECP2 genu, by měla 
v první řadě splňovat diagnostická krité-
ria pro klasický nebo atypický Rettův syn-
drom, jak je uvedeno v tab. 1 a 2. U pa-
cientů a pacientek s dětským autizmem 
a dalšími výše popsanými fenotypy, je-
jichž klinický obraz zcela neodpovídá RTT, 
je možné genetické testování provést 
také, avšak pozitivní výsledek lze očekávat 
jen s malou pravděpodobností. Analýza 
CDKL5 genu je doporučena pouze u pa-
cientek s tzv. early onset seizure variantou 
RTT, kdy se záchvaty objevují už v průběhu 
prvních šesti měsíců života.

Nepřítomnost kauzální mutace klinicky 
stanovenou diagnózu v žádném případně 
nevylučuje. Molekulárně genetické me-

Dalším kandidátem je gen NTNG1 ležící 
na chromozomu 1. Jeho produktem je Ne-
trin G1 (též laminet- 1), protein exprimo-
ván především v mozku, který má důleži-
tou funkci v průběhu vývoje CNS [88,89]. 
Dosud byl v literatuře popsán jen jediný 
případ narušení NTNG1 genu (translokací) 
u pacientky s RTT [90], proto se nepřed-
pokládá, že by mutace v tomto genu byly 
častou příčinou onemocnění.

Terapeutické přístupy
Dosud neexistuje žádná účinná tera-
pie, která by zastavila nebo zvrátila po-
stup onemocnění, ačkoliv parciální vý-
sledky získané na myších modelech jsou 
velmi slibné. Léčba RTT je proto v součas-
nosti pouze symptomatická a podpůrná. 
Charakter onemocnění a široká variabi-
lita příznaků vyžadují multidisciplinární 
přístup zaměřený na individuální potřeby 
každé pacientky. Častým a závažným pro-
blémem bývají záchvaty, které jsou však 
u většiny pacientek s úspěchem kompen-
zovány antikonvulzivní terapií. Pro rozvoj 
a zachování svalové hmoty, zlepšení po-
hyblivosti a rovnováhy se osvědčila reha-
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