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XXXIV. Bayesovské sítě

V tomto díle seriálu uzavřeme výklad prin-
cipů bayesovské statistiky ukázkou apli-
kace, která má význam v  teoretickém 
i aplikovaném klinickém výzkumu. Z pro-
storových důvodů se již nebudeme vra-
cet k základním principům bayesovského 
hodnocení a  čtenáře odkazujeme na 
předchozí díly seriálu číslo XXXI– XXXIII, 
kde jsme této problematice věnovali do-
statečný prostor. Úvodem však k bayesov-
ským sítím musíme připomenout hlavní 
výhody bayesovského usuzování, které 
bývá v  literatuře označováno za zvláštní 
a  ucelený koncept myšlení. Bayesovský 
přístup tedy:
•	poskytuje nejen možnost odhadovat 

hodnoty parametrů studovaných roz-
dělení pravděpodobnosti, ale také pra-
covat s  jejich neurčitostí pomocí jejich 
vlastního pravděpodobnostního cho-
vání, tedy velmi dobře interpretovatel-
ným způsobem,

•	umožňuje kombinovat exaktní (ex-
perimentální) vstupy s  teoretickými 
předpoklady a  odhady ve formě 
apriorních informací (pravděpodob-
ností); oba typy vstupních informací 
přitom nejsou v  rozporu, naopak se 
dobře doplňují.

V tomto díle krátce přiblížíme aplikaci 
nástroje pro modelování a  zobrazování 
pravděpodobnostních vztahů náhodných 
veličin a jevů. Jde o nástroj užitečný např. 
při studiu vzájemných souvislostí mezi rizi-
kovými faktory nějaké nemoci či mezi pre-
diktory jejího vývoje. Tato problematika 
je velmi častá v  medicínském výzkumu 
i  praxi, jen málokdy můžeme pracovat 
s více prediktory, které by byly vzájemně 
zcela nezávislé. Přesto jsme pro jednodu-
chost v dosud vysvětlovaných aplikacích 
bayesovské statistiky předpokládali vzá-
jemnou nezávislost použitých prediktorů 
a  řešili jsme pouze jejich vztah s  jevem, 
jehož pravděpodobnost jsme odhadovali. 
Například vztah charakteristik pacienta 
a nemoci k pravděpodobnosti výskytu to-
xicity při určité léčbě. Tento přístup ale 

neodpovídá realitě, kdy pravděpodob-
nostní vztahy mezi prediktory zcela běžně 
existují. Například v modelu pro predikci 
rizika cévní mozkové příhody bude věk 
pacientů ve vztahu s různými komorbidi-
tami, jako je diabetes mellitus nebo hy-
pertenze. S  jednotlivými prediktory tak 
není možné automaticky pracovat jako 
se vzájemně nezávislými faktory. Z  po-
hledu frekventistické statistiky jde o pro-
blém redundance prediktorů, který je jed-
ním z nejvážnějších problémů při tvorbě 
vícerozměrných stochastických modelů. 
A také jednou z častých příčin odmítnutí 
takových modelů v prestižních vědeckých 
časopisech. 

Jedním z nástrojů, které umožňují zo-
hlednit vzájemné vztahy prediktorů, jsou 
tzv. bayesovské sítě. Tato metoda slouží 
k popisu pravděpodobnostní sítě vzájem-
ných vazeb jak prediktorů, tak i cílových 
parametrů hodnocení. S  pomocí baye-
sovských sítí je možné odhadnout prav-
děpodobnost nastání hodnoceného jevu 
tak, že bereme do úvahy vazby nejenom  
mezi prediktory a  cílovým parametrem, 
ale i mezi prediktory navzájem. Jde tedy 
o modely užitečné i pro klinický výzkum, 
kde se jen málokdy potkáváme s čistě de-
terministickým rozhodováním bez neur-
čitostí. Přidanou hodnotou bayesovských 
sítí je také fakt, že jejich výstupy mohou 
být podpořeny přehlednou grafickou 
vizualizací.

Základním pojmem, se kterým bayesov-
ské sítě pracují, je tzv. podmíněná nezá-
vislost náhodných jevů či náhodných veli-
čin. Náhodné jevy A a B jsou podmíněně 
nezávislé za podmínky C, pokud platí 
P(A∩B|C) = P(A|C)P(B|C). Musí tedy platit, 
že pravděpodobnost současného nastání 
jevů A  a B za podmínky nastání jevu C 
je rovna součinu podmíněných pravdě-
podobností výskytu těchto jevů za pod-
mínky C. Podmíněná nezávislost se někdy 
také značí A | B|C. Základním cílem baye-
sovských sítí je prezentovat znalosti o sle-
dovaném náhodném jevu (cílový parametr 
hodnocení, endpoint) na pokladě nezávis-

lých prediktorů a ty potom využít v dalším 
rozhodování či usuzování. 

Příklad 1  (převzato z  práce Ben-Gal, 
2007) popisuje jednoduchou baye-
sovskou síť. Matematicky řečeno jde 
o tzv. acyklický orientovaný graf, kde jed-
notlivé hodnocené jevy (veličiny) jsou re-
prezentovány uzly grafu a ty jsou spojeny 
takzvanými hranami (šipky v grafu), které 
popisují jejich vzájemnou závislost (popi-
sují závislost sledovaných veličin). Kromě 
tohoto typu sítě, kde hrany mají defino-
vaný směr, existují ještě sítě s hranami bez 
definovaného směru, tzv. markovské sítě, 
jejichž výklad ale nyní přesahuje rámec to-
hoto článku. Oba typy sítí patří do sku-
piny metod nazývaných souhrnně pravdě-
podobnostní grafické modely.

Ke každému uzlu u v grafu (příklad 1) je 
přiřazena pravděpodobnost jeho nastání 
v závislosti na jeho tzv. rodičovských uz-
lech, P(u|rodice(u)), přičemž rodičovskými 
uzly jsou všechny předchozí uzly, z nichž 
vychází hrany (šipky v grafu) k danému 
uzlu (ten je nazýván také jako potomek). 
Topologie bayesovské sítě tak popisuje, 
jak „rodiče“ z hlediska pravděpodobnosti 
ovlivňují své „potomky“. Genealogická 
terminologie je používána také pro ozna-
čení uzlů jako „předci“, což je sada uzlů, 
ze kterých je hodnocený potomek dosaži-
telný přímou cestou v grafu nebo „násle-
dovníci“, kteří mohou být v grafu přímo 
dosaženi, pokud vyjdeme z hodnoceného 
uzlu. Zároveň platí, že žádný uzel nemůže 
být sám sobě rodičem ani potomkem. 
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Každému uzlu v síti přiřazujeme tabulku 
s rozdělením pravděpodobností jeho vý-
skytu (příklad 1). V  případě uzlů, které 
nemají rodiče, je to nepodmíněná prav-
děpodobnost, v opačných případech jde 
o podmíněné pravděpodobnosti. 

Bayesovská síť je tedy pravděpodob-
nostní model, kterým můžeme popsat 
kauzální vazby mezi studovanými ná-
hodnými veličinami v  síti prezentova-
nými jako uzly. Hrana A – > B znamená, 
že A kauzálně ovlivňuje B, a  tedy pozo-
rování jevu A poskytuje kauzální podporu 
pro výskyt jevu B. Velkou výhodou baye-
sovských sítí je možnost vykreslit i velmi 
složitý systém uzlů a  vzájemných vazeb 
graficky, což usnadňuje čtení i  interpre-
taci. Grafická forma je také pro svou pro-
storovou úspornost dobře využitelná pro 
publikace. Bayesovskou síť nazýváme jed-
noduše souvislou, pokud mezi dvěma uzly 
existuje právě jedna neorientovaná cesta 
(hrana). Někdy je taková síť v  literatuře 
označovaná jako les. Jeho zvláštní formou 

je strom, což je graf, kde každý uzel má 
jen jednoho rodiče. 

Pokud jednotlivé uzly sítě očíslu-
jeme tak, že rodiče mají vždy nižší po-
řadové číslo než jejich potomci, pak 
platí, že každý jednotlivý uzel je podmí-
něně nezávislý na uzlech s  nižším čís-
lem s výjimkou svých rodičů. Tato vlast-
nost umožňuje výpočet tzv. sdružené 
pravděpodobnosti ať již pro celou síť 
nebo pro vybranou sadu jejích uzlů: 
P(u1

,...,u
n
) = Πn

i=1 
P(u

i
|rodice(u

i
)). Jako 

sdruženou pravděpodobnost označujeme 
pravděpodobnost současného nastání 
sledovaných náhodných jevů, ve zde za-
vedené terminologii tedy uzlů. Dle defi-
nice platí, že sdružená pravděpodobnost 
nezávislých diskrétních veličin se rovná 
součinu marginálních pravděpodobností. 
To lze na příkladu dvou náhodných veličin 
A a B zapsat následovně:
P(A∩B) = P(A)P(B|A) = P(B)P(A|B). Jsou‑li 
tyto veličiny zcela nezávislé, pak získáme 
známý vztah: P(A∩B) = P(A)P(B).

Ačkoliv šipky v  síti označují příčinné 
vazby a jejich směr (příčinu a důsledek), je 
možné pohybovat se při výpočtu sdruže-
ných pravděpodobností v síti libovolným 
směrem. 

V příkladu 2 využíváme výše popsané 
možnosti výpočtu sdružených pravděpo-
dobností pro pravděpodobnostní usu-
zování (inferenci), kdy při znalosti struk-
tury sítě a podmíněné pravděpodobnosti 
v  jednotlivých uzlech můžeme vypočítat 
aposteriorní pravděpodobnost výskytu 
(nastání) libovolného uzlu sítě. Vzhledem 
k výpočetní náročnosti neuvádíme obecný 
postup výpočtu, který může být prováděn 
relativně širokou škálou dostupných algo-
ritmů; v případě zájmu čtenáře odkazu-
jeme na specializovanou literaturu a do-
stupný software, jako je např. knihovna 
deal pro statistický jazyk R (Boettcher and 
Dethlefsen, 2003).

V analýze pomocí bayesovských sítí 
můžeme postupovat od pravděpodob-
nosti výskytu jevu k  jeho teoretickým 

Příklad 1. Aplikace bayesovské sítě pro modelový popis systému sledujícího příčiny bolesti zad.

Cvičení
(jev B)

Spolupracovník
(jev D)

Zranění zad
(jev C)

Bolesti zad
(jev E)

Převzato a upraveno z: Ben-Gal I. Bayesian Networks. In: Ruggeri F, Faltin F, Kenett R (eds). Encyclopedia of Statistics in Quality & Reliability. 
Hoboken: Wiley & Sons 2007.

Zadání: Po zranění zad (jev C) může u hodnocené osoby dojít k rozvinutí bolesti zad (jev E). Ke vzniku zranění může dojít při nevhodném sportovním cvičení (jev B) 
nebo jako důsledek nevhodného sezení v zaměstnání (veličina křeslo – jev A). Pokud je zranění způsobeno nevhodným sezením, je pravděpodobné, že podobnými 
problémy budou trpět i spolupracovníci (jev D) hodnoceného pacienta. Všechny veličiny (A, B, C, D, E) jsou v tomto příkladu binární a mohou nabývat hodnot ano 
(a)/ne (n). Pro popis pravděpodobností systému konstruujeme bayesovskou síť o pěti uzlech. 

Křeslo
(jev A)

P (A = a) P (A = n)

0,80 0,20

P (B = a) P (B = n)

0,02 0,98

A P (D = a|A) P (D = n|A) 

a 0,90 0,10

n 0,01 0,99

C P (E = a|C) P (E = n|C)

a 0,70 0,30

n 0,10 0,90

A B P (C = a|A,B) P (C = n|A,B)

a a 0,90 0,10

a n 0,20 0,80

n a 0,90 0,10

n n 0,01 0,99

Z bayesovské sítě jsou patrné vztahy mezi uzly v pozici „rodičů“ a „potomků“, popsané pomocí tabulek podmíněných pravděpodobností v jednotlivých uzlech. 
S pomocí těchto dat a vzorce pro výpočet sdružených pravděpodobností:

jsme schopni spočítat sdružené pravděpodobnosti ať již pro celou síť nebo pro libovolnou sadu jejích uzlů. 

Podmíněné pravděpodobnosti jsou 
buď počítány z primárních dat nebo 
jsou výsledkem externí znalosti.

Pro rodičovský uzel jde 
o pravděpodobnost nastání jeho 
stavu ano (a)/ne (n) v hodnoceném 
souboru / populaci. 
Pro potomky jde 
o pravděpodobnost nastání jejich 
stavu ano (a)/ne (n) podmíněnou 
aktuálním stavem jejich 
rodičovského uzlu(ů).

Spočítejme sdruženou pravděpodobnost sítě pro situaci, kdy je instalováno nové nepohodlné křeslo (A = a) a zároveň došlo u pacienta k bolestem zad (E = a), 
výsledná pravděpodobnost pak slouží pro podporu nebo vyvrácení hypotézy, že nepohodlné křeslo souvisí s bolestí zad. Celková pravděpodobnost, že po instalaci 
nepohodlného křesla dojde k bolestem zad, je po dosazení do vzorce 0,183, tedy cca 18 %.

Jak bylo zmíněno výše, sdružené pravděpodobnosti je možné počítat pro libovolnou sadu uzlů sítě. V jednoduchém příkladu, kdy nás bude zajímat 
pravděpodobnost nastání zranění zad (C = a) při cvičení (B = a), získáme po dosazení do vzorce p = 0,018, tedy z celé hodnocené populace je pravděpodobnost 
vzniku zranění zad při sportu pouze 1,8 %.

Příklad 1. Aplikace bayesovské sítě pro modelový popis systému sledujícího příčiny bolesti zad.
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příčinám (tzv. diagnostická inference), 
ale i  naopak od znalosti pravděpo-
dobnosti možných příčin (např. rizi-
kových faktorů) k  hodnocenému jevu 

(tzv. kauzální inference). Nicméně ani 
bayesovské sítě nejsou nástroj, který by 
mohl samostatně pracovat bez člověka, 
a zejména při hodnocení kauzality jevů 

si musíme uvědomovat riziko příslo-
večného „korelování hrušek s  jablky“. 
I když znalost kauzálních vztahů by měla 
být základem tvorby bayesovské sítě, 

Příklad 2. Aplikace bayesovské sítě pro statistické usuzování (inferenci) při diagnostice příčiny onemocnění.

Zadání: V dané oblasti se může vyskytovat přenašeč onemocnění (vektor, V). Onemocnění může být přeneseno buď přímo bodnutím 
přenašečem (B), nebo kontaktem s nemocným člověkem (K). V případě kontaktu s nemocným nebo bodnutí přenašečem se u sledova-
ného pacienta může nebo také nemusí rozvinout dané onemocnění (O). Všechny veličiny (V, K, B, O) jsou v tomto příkladu binární a mo-
hou nabývat hodnot ano (1)/ne (0).
 

Otázka: Při analýze celého systému nás zajímá, co je po zjištění onemocnění u pacienta jeho nejpravděpodobnější cestou přenosu. 
Vyhodnotíme tedy pravděpodobnost, zda v případě onemocnění pacienta (O = 1) nastal kontakt s nemocným člověkem P (K = 1|O = 1) 
nebo naopak bodnutí přenašečem P (B = 1|O = 1).
 

Výskyt přenašeče 
onemocnění

Kontakt 
s nemocným 

člověkem

Bodnutí přenašečem

Onemocnění

P (V = 1) P (V = 0)

0,50 0,50

V P (K = 1|V) P (K = 0|V)

a 0,10 0,90

n 0,50 0,50

V P (B = 1|V) P (B = 0|V)

a 0,80 0,20

n 0,20 0,80

K B P (O = 1|K,B) P (O = 0|K,B) 

a a 0,99 0,01

a n 0,90 0,10

n a 0,90 0,10

n n 0,00 1,00

kde:
 

Spočtené sdružené pravděpodobnosti sumarizují celou cestu příčin a následků, jak je popsána v bayesovské síti. Kombinací rodičovských 
uzlů sítě předcházejících uzlu onemocnění pacienta (tedy od výskytu přenašeče přes možnost kontaktu s nemocným a možnost bodnutí 
přenašečem) tak zjišťujeme, že v případě onemocnění pacienta jde s pravděpodobností 0,71 o důsledek bodnutí přenašečem a s pravdě-
podobností 0,43 o důsledek kontaktu s nemocným člověkem.

Závěr: Maximální aposteriorní pravděpodobnost má příčina bodnutí přenašečem, tedy P (B = 1|O = 1) > P (K = 1|O = 1), 
pravděpodobnějším způsobem nákazy je tak bodnutí přenašečem.

Příklad 2. Aplikace bayesovské sítě pro statistické usuzování (inferenci) při diagnostice příčiny onemocnění.
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ne všechny vazby v  síti musí mít nutně 
kauzální příčinu.

Možnost pracovat s topologií sítě před-
stavuje z  výpočetního hlediska podstat-
nou výhodu ve smyslu redukce parame-
trů modelu. Představme si, že studujeme 
vliv pěti různých binárních znaků na ur-
čité riziko související s nemocí pacientů. 
Pokud bychom chtěli prověřit vzájem-
nou nezávislost všech těchto faktorů, 
museli bychom hodnotit pravděpodob-
nost výskytu všech jejich kombinací (po 
dvou, po třech, …) a celkem bychom tak 
hodnotili 25  komponent. Pravděpodob-
nost výskytu všech potenciálních inter-
akcí faktorů (prediktorů) by většinou ne-
bylo možné empiricky posoudit, nehledě 
na to, že by zásadně narostly požadavky 
na velikost vzorku v experimentu. Pravdě-
podobnostní model pracující na základě 
bayesovské sítě tak představuje velmi lá-
kavou alternativu. Např. v příkladu 1 v síti 
s pěti uzly jsme hodnocení redukovali na 

10  vztahů daných vzájemnými vazbami 
uzlů (veličin) v síti. 

Bayesovské sítě představují grafický 
nástroj, který je intuitivně snadno ucho-
pitelný, a  pro interpretaci tak nabízí 
i  využitelný pravděpodobnostní popis 
zobrazovaných vztahů. Popularita baye-
sovských sítí je v posledním desetiletí na 
vzestupu a používají se pro řadu aplikací 
ve vytěžování dat a  textů, při vývoji po-
stupů pro rozpoznávání řeči, v  analýze 
signálů, předpovědi počasí a v neposlední 
řadě v medicínských aplikacích, zejména 
diagnostice. O becně platná grafická 
forma sítí umožňuje začlenit jako uzly ne-
jenom měřené náhodné veličiny (jevy), 
ale také hypotézy, očekávání a jiné teore-
tické faktory. Bayesovská síť je ideální ná-
stroj pro kombinování apriorní (expertní) 
znalosti kauzality s výsledky vyplývajícími 
z analýzy reálných dat. Rozvoj počítačové 
techniky umožňuje aplikací bayesovských 
sítí popisovat i složité klinické problémy, 

kde počty sledovaných rozměrů jdou do 
stovek a  tisíců. Po několik století budo-
vaná teorie se tak stává základem pro 
studium skutečně reálných problémů. 
V brzké budoucnosti se bayesovské sítě 
stanou klíčovým nástrojem umělé inteli-
gence a umožní její nasazování pro řešení 
velmi složitých systémů. 
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