
160 Cesk Slov Ne urol N 2016; 79/ 112(2): 160– 167

PŘEHLEDNÝ REFERÁT REVIEW ARTICLE

Nanočástice jako nosiče léků přes 
hematoencefalickou bariéru –  naděje pro 
léčbu neurodegenerativních onemocnění 
v budoucnosti?

Nanoparticle-based Drug Delivery Systems 

Cros s ing Blood-brain Bar rier –  Hope for Future 

Treatment of Neurodegenerative Disorders?

Souhrn
Neurodegenerativní onemocnění, mezi něž patří např. Alzheimerova a Parkinsonova nemoc, se 

kvůli své neustále se zvyšující prevalenci a nedostupnosti efektivní léčby staly jedním z nejpalči-

vějších problémů moderní medicíny. Ačkoli existují látky s potenciálním terapeutickým účinkem, 

hematoencefalická bariéra vytváří účin nou překážku pro transport léků do centrálního nervového 

systému. Naději pro vyřešení tohoto problému přinesl nástup nanotechnologií umožňujících 

přípravu částic s přesně navrženými vlastnostmi pro překročení hematoencefalické bariéry. Širo-

kému využití nanočástic pro transport léků brání nedostatečné zmapování jejich bio logických 

vlastností a bezpečnostních rizik. Pokrok v této oblasti společně s rostoucím porozuměním pato-

genezi neurodegenerativních onemocnění by v budoucnu mohl vést k nalezení jejich efektivní 

léčby.

Abstract
Due to the continually rising prevalence and lack of eff ective therapy, neurodegenerative disor-

ders, such as Alzheimer’s and Parkinson’s disease, are among the most serious problems of mod-

ern medicine. Even though promising compounds with potential therapeutic eff ect have been 

developed, blood-brain barrier impedes their transport to the central nervous system. Nanotech-

nologies produce particles with properties that enable them to cross the blood-brain barrier and 

thus provide hope in solving this problem. Wide utilization of nanoparticles for transportation of 

drugs is prevented by our limited knowledge of their biological properties and their safety profi le. 

Further developments in this fi eld together with increasing understanding of the pathogenesis of 

neurodegeneration may lead to development of eff ective therapy in the future. 
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Úvod
Neurodegenerativní onemocnění se vyzna-

čují masivním odumíráním neuronů spoje-

ným s akumulací patologické formy proteinu 

specifického pro konkrétní onemocnění 

v mozkové tkáni (Alzheimerova nemoc –  

beta-amyloid a hyperfosforylovaný protein 

tau, Parkinsonova nemoc –  alfa-synuklein, 

Creutzfeldtova-Jakobova choroba –  prio-

nový protein PrPTSE, frontotemporální lobární 

degenerace –  tau protein nebo protein TDP-

43, aj.).

Abnormální protein vzniká změnou kon-

formace nativního proteinu, při níž dochází 

k nahrazení sekundární proteinové struktury 

obsahující alfa šroubovice (helixy) struktu-

rou beta skládaného listu. Vytváří se „cross 

beta helikální“ struktura, která je rezistentní 

vůči proteolytickému štěpení a agreguje za 

vzniku amyloidových fi bril [1,2]. Pokud se 

během vzniku a následné kontroly kvality 

proteinů v endoplazmatickém retikulu (ER) 

vyskytne špatně sbalený, nesbalený nebo 

abnormální protein, dochází ke spuštění 

dráhy degradace spojené s ER (Endoplasmic 

Reticulum As sociated Degradation; ERAD). 

Chaperon BiP (im munoglobulin heavy-chain 

bind ing protein) rozpozná špatně sbalené, 

popř. abnormální proteiny a umožní jejich 

transport do cytozolu, kde jsou ubikvitino-

vány a degradovány v proteazómu. Neod-

straní-li tato dráha abnormální proteiny, do-

chází k jejich akumulaci, stresu ER a aktivaci 

dráhy buněčné odpovědi na nesbalené pro-

teiny (Unfolded Protein Response; UPR).

Aktivace části nebo celé této dráhy byla 

shodně pozorována u Alzheimerovy ne-

moci (AN), Parkinsonovy i Creutzfeldtovy-Ja-

kobovy nemoci [3]. U AN v této dráze hraje 

zřejmě důležitou úlohu karboxy-terminální 

fragment-β (C99, též CTFβ), který vzniká ště-

pením prekurzorového proteinu beta-amy-

loidu a inhibuje ERAD dráhu a proteazo-

mální degradaci, což vede k jeho transportu 

do lyzozomu. Pokud dojde i k poškození ly-

zozomu, jsou abnormální proteiny transpor-

továny na buněčný povrch [4– 6] a dochází 

ke vzniku amyloidových plak, které jsou bar-

vitelné pomocí Kongo červeně nebo thio-

fl avinu T [7,8]. Současný výzkum naznačuje, 

že nejvíce toxické jsou pro buňky oligomery 

abnormálního proteinu, ale přesný mechani-

zmus jejich toxicity není znám [9,10]. 

S narůstajícím stárnutím populace se vý-

razně zvyšuje výskyt zejména AN, pro kte-

rou, stejně jako pro další neurodegenera-

tivní onemocnění, neexistuje kauzální léčba. 

Symp tomatickou terapii AN zahrnují inhi-

bitory acetyl-cholinesterázy (donepezil, ri-

vastigmin nebo galantamin) a nekompeti-

tivní antagonisté N-metyl-D-aspartátových 

(NMDA) glutamátových receptorů (meman-

tin). K nadějným (ale zatím rutin ně nedostup-

ným) strategiím léčby AN patří inhibitory β- 

a γ-sekretázy, inhibitory zabraňující tvorbě 

amyloidových agregátů či imunoterapie cí-

lená proti beta-amyloidu (Aβ42), anebo pro-

teinu tau. Při léčbě Parkinsonovy nemoci 

slouží jako léky první volby levodopa prostu-

pující přes hematoencefalickou bariéru (HEB) 

do mozku, kde je dekarboxylována na dopa-

min. Problémy s využitím těchto léků souvisí 

především s účin ností transportu přes HEB, 

nežádoucími účinky (trávicí obtíže u inhibi-

torů acetylcholinesterázy, levodopou indu-

kované dyskineze, možná toxicita vůči ner-

vovým buňkám) nebo zvýšenou rychlostí 

odstraňování z krevního oběhu [11– 14]. 

Naději pro řešení těchto problémů předsta-

vují cíleně modifi kované nanočástice slou-

žící jako distributory léků přes HEB [15– 17].

Struktura HEB a hlavní 
transportní mechanizmy
Centrální nervový systém (CNS) je od zbytku 

organizmu oddělen HEB, která udržuje stálé 

vnitřní prostředí a zároveň brání vniku ci-

zorodých a potenciálně škodlivých látek. 

HEB je tvořena jednou vrstvou endotelo-

vých buněk, které jsou mezi sebou spojeny 

těsnými a adherentními spoji. Endotelové 

buňky jsou v apikální části mezibuněčného 

prostoru propojeny do tzv. těsného spoje 

prostřednictvím transmembránových pro-

teinů: klaudinů, okludinů a cytoplazmatic-

kých proteinů. V bazolaterální části mezi-

buněčného prostoru dochází k propojení 

buněk pomocí proteinů kadherinu, inte-

grinů a s nimi asociovaných proteinů za 

vzniku adherentního spoje. Těsný spoj spolu 

s adherentním určují fyzickou bariérovou 

funkci HEB a jejich narušení vede ke zvý-

šené propustnosti HEB pro cizorodé látky. 

Do vrstvy endotelových buněk vybíhají pe-

ricyty a axonální patky astrocytů, jež spolu 

s endotelovými buňkami určují, pro které 

molekuly bude HEB propustná a pro které 

nikoliv [18– 20].

Výsledkem těchto interakcí je semi-per-

meabilní bariéra, která propouští pouze:

a)  malé molekuly (O
2
, CO

2
, H

2
O);

b)  malé, lipofi lní molekuly o maximální veli-

kosti 400– 600 Da (steroidní hormony jako 

kalcitriol, aj.), které volně difundují přes 

plazmatickou membránu endotelových 

buněk [21,22].

Pro ostatní molekuly, které nesplňují tyto 

podmínky a jsou nezbytné pro zajištění vý-

živy CNS, existují přenašeče. Transport glu-

kózy zajišťují přenašeče rodiny GLUT (-1, -3, 

-4, -5 ad.) usnadněnou difúzí. Přenašeče 

pro ně kte ré aminokyseliny, organické ky-

seliny nebo nukleotidy jsou obvykle spřa-

ženy s transportem specifi ckých iontů. Mak-

romolekuly (inzulin, transferin ad.) bývají 

transportovány receptorem zprostředkova-

nou trans cytózou přes cytoplazmu endote-

lových buněk. Export odpadních produktů 

metabolizmu nebo molekul, které by v nad-

měrném množství mohly fungovat neuroto-

xicky (glutamát), či různých cizorodých látek 

zajišťují specifi cké přenašeče z rodiny ABC 

proteinů obsahující ATP vazebnou kazetu. 

Patří sem transportéry skupiny ABCA (např. 

ABCA1 –  zajišťuje odstraňování cholesterolu 

ad.) [23 24], ABCB (ABCB1 –  p-glykoprotein 1, 

který je odpovědný za export xenobio tik, 

steroidů ad.), ABCC, ABCG (ABCG2 –  protein 

rezistence rakoviny prsu (Breast Cancer Re-

sistance Protein; BCRP) zajišťující rovněž ex-

port xenobio tik, flavonoidů či porfyrinů) 

atd. [25]. Přenos organických aniontů a ka-

tiontů zajišťuje skupina transportérů rozpuš-

těných látek (Solute Car rier; SLC), mezi které 

patří transportéry organických kationtů (Or-

ganic Cationt Transporter; OCT) a trans-

portéry organických aniontů OAT, které 

odpovídají za vstup a výstup živin, neuro-

transmiterů, metabolitů a toxinů z resp. do 

buněk [26,27].

Tento propracovaný systém přenašečů 

aktivně transportuje většinu léků procháze-

jících přes HEB zpět do krve a je hlavní příči-

nou problému cílené dopravy léků do CNS 

a tvoří základ tzv. mnohočetné lékové rezis-

tence. Po dlouhou dobu byl CNS považován 

za kompletně imunoprivilegovaný orgán. 

Nejnovější výzkumy však odhalily přítom-

nost lymfatických cév, které přemosťují HEB 

a umožňují vstup imunitních buněk z těla do 

CNS [28]. To ale nemění nic na faktu, že pře-

konání komplexního systému HEB je velká 

výzva pro současný výzkum zaměřený na cí-

lený transport léků do CNS.

Nanočástice –  koncept 
trojského koně
Limitovaná propustnost HEB pro řadu léků, 

které nesplňují požadavky pro transport do 

CNS (velikost nad 400 Da, nedostatečná hyd-

rofobicita aj.), vede ke snaze o navržení alter-

nativní strategie transportu. Jednou z mož-

ností je využití nanočástic jako tzv. trojského 

koně. V tomto konceptu dojde k připojení 
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nebo zabalení léku do nanočástice s cíleně 

navrženými vlastnostmi umožňujícími pře-

chod přes HEB. V dalším kroku se nanočás-

tice s lékem dostávají do cílových buněk, kde 

následně dojde k uvolnění léku do tkáně.

Agregace nanočástic a jejich 

interakce s proteiny v organizmu
Nanočástice jsou defi novány jako velmi malé 

částice, jejichž jeden rozměr je menší než 

100 nm. Hydrofobicita mnohých nanočástic 

(uhlíkové nanotuby, ně kte ré dendrimery aj.) 

snižuje jejich rozpustnost ve vodných rozto-

cích a v tělních tekutinách. To má za násle-

dek jejich agregaci a tvorbu shluků. Minima-

lizace tvorby shluků a zvýšení rozpustnosti 

lze dosáhnout zavedením funkčních skupin, 

např. -COOH, -NH
2
, -SO

3
H, na povrch nano-

částic nebo jejich spojením s neiontovými 

kopolymery (pluronický F108, F127 aj.), které 

často snižují jejich toxické vlastnosti při dlou-

hodobém působení v okolí buněk [29– 31].

Po vstupu nanočástic do krevního řeči-

ště nebo po jejich aplikaci do CNS dojde na 

základě elektrostatických a hydrofobních sil 

k navázání proteinů a dalších makromolekul 

krevní plazmy, resp. mozkomíšního moku na 

jejich povrch. Slabě navázané proteiny jsou 

vytěsňovány jinými a postupně se ustaluje 

jejich skladba za vzniku stabilního proteino-

vého obalu, tzv. tvrdé korony. Konkrétní za-

stoupení jednotlivých proteinů v tvrdé ko-

roně závisí ve větší míře na povrchových 

vlastnostech nanočástic, v menší míře pak 

na jejich velikosti [32]. Mezi nejvíce zastou-

pené proteiny krevní plazmy, např. u korony 

uhlíkových nanotub, patří fi brinogen, lidský 

sérový albumin, apolipoprotein A a imuno-

globulin G [33].

Nabalováním dalších proteinů na vrstvu 

tvrdé korony vzniká tzv. měkká korona, jejíž 

složení se postupnou asociací a disociací 

proteinů ustálí do dynamické rovnováhy 

a dosáhne téměř stabilního složení [34]. 

Vznik proteinové korony a interakci nanočás-

tic s proteiny krevní plazmy lze omezit funk-

cionalizací a inkubací nanočástic s ve vodě 

rozpustnými polymery, jako je polyetylen-

glykol (PEG) [35,36]. Složení proteinové ko-

rony do velké míry ovlivňuje výsledky inter-

akce nanočástic s buňkami a studium vlivu 

změn složení proteinové korony při prů-

chodu HEB na funkční vlastnosti nanočástic 

představuje důležitý krok v jejich použití pro 

cílený transport léků do mozku.

Prostup nanočástic přes HEB
S přihlédnutím k architektuře a bariérové 

funkci HEB ovlivňuje celková velikost na-

nočástice nesoucí lék mechanizmus pro-

stupu do CNS. Mezi možné cesty patří re-

ceptorem zprostředkovaná endocytóza 

(specifi cký ligand se váže na specifi cký re-

ceptor), adsorpcí zprostředkovaná endo-

cytóza (pozitivní náboj ligandu interaguje 

s negativním nábojem na povrchu plazma-

tické membrány) a buňkou zprostředkovaná 

trans cytóza (nanočástice jsou neseny mono-

cytem či makrofágem; obr. 1) [37].

Atraktivní je využití receptorem zpro-

středkované endocytózy [38,39]. Buňky 

HEB exprimují specifické receptory pro 

Obr. 1. Možné cesty prostupu nanočástic přes HEB. 
Fig. 1. Possible ways of nanoparticle penetration through the blood-brain barrier.
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transport molekul uplatňujících se v me-

tabolizmu CNS, jako je transferinový, inzu-

linový nebo lipoproteinový receptor [40]. 

Navázáním specifických ligandů na po-

vrch nanočástic lze docílit receptorem 

zprostředkované endocytózy nanočástice 

a její následné transcytózy endotelovými 

buňkami [41,42]. 

Ně kte ré typy nanočástic se však po en-

docytóze hromadí v perinukleární oblasti 

endotelových buněk (obr. 2), nedokončují 

transcytózu a jsou buňkou směrovány do ly-

zozomu, kde nastává odbourávání funkčních 

skupin, dokud se neodhalí nefunkcionalizo-

vané jádro. Toto jádro buňky problematicky 

štěpí a vznikají toxické efekty [43] (příkla-

dem mohou být uhlíkové nanotuby [39,44]). 

Dochází k indukci apoptózy a autofágie, při 

níž jsou nanotuby exportovány z buňky v au-

tofagických váčcích [45]. Navázání IgG na na-

nočástice vede k jejich zvýšené fagocytóze 

buňkami imunitního systému, což nepříznivě 

ovlivňuje cirkulaci nanočástic v krevním řeči-

šti [46]. Tento problém může být řešen např. 

Obr. 2. Perinukleární lokalizace uhlíkových nanotub M60COOH v lidských endotelových buňkách HUVEC, které slouží jako model HEB [47]. 
Fig. 2. Perinuclear localization of the M60COOH carbon nanotubes in human endothelial cells (HUVEC) that serve as a model of the 
blood-brain barrier [47].

Červeně – fl uorescenčně značené karboxylované uhlíkové nanotuby, modře – buněčná jádra značená TO-PRO-3, zeleně – aktinový cytoske-

let značený faloidinem konjugovaným s Alexa Fluor 488. Obrázek byl zhotoven na konfokálním mikroskopu Zeiss 710 LSM za využití plana-

chromatického objektivu s olejovou imerzí 40×/1,4. Měřítko: 10 μm.
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konjugací nanočástic s PEG. PEG konjugo-

vané lipozómy neváží opsoniny z krve, a to jim 

umožňuje delší setrvání v krevním oběhu [47].

Uvolnění léku z nanočástice 

a její degradace
Po dosažení buněk cílové oblasti mozku je 

zapotřebí, aby došlo k uvolnění léku z nano-

částice a její degradaci, popř. transportu zpět 

do krevního řečiště a vyloučení z těla bez po-

škození organizmu.

Společnou destinací většiny typů nanočás-

tic je endozomální-lyzozomální systém, který 

degraduje buňce vlastní i cizorodé částice 

a je místem, v němž obvykle dochází k uvol-

nění léku z nanočástice [30,49,50]. Rychlost 

uvolňování léku se liší podle typu nanočás-

tic a způsobu navázání léku. Např. u polymer-

ních nanočástic závisí na prosté difúzi, která je 

ovlivněna složením polymeru a vlastnostmi 

léku. Kontrolované uvolňování léku může být 

zajištěno jeho uvolňováním spolu s degra-

dací molekul polymerního obalu. Tak se lék 

může postupně uvolňovat i několik dní [51].

Po odhalení vlastního povrchu nanočás-

tic tedy může docházet buď k jejich bio-

degradaci (např. lipozomy), nebo k de-

stabilizaci a následné destrukci lyzozomu 

(např. uhlíkové nanotuby [30]) či k trans-

portu ven z buňky (např. polymerní nano-

částice [52]) a dalšímu postupu krevním 

řečištěm.

Nanočástice využitelné 
pro přenos léků přes HEB
Lipozomy
Lipozomy vznikají z lipidů a fosfolipidů, které 

se na základě van der Waalsových sil a hyd-

rofobních interakcí za specifi ckých podmí-

Obr. 3. Typy nanočástic.
Fig. 3. Types of nanoparticles.

A) Lipozom: modře – hydrofi lní hlavičky fosfolipidů, vně lipozomu navázány molekuly polyetylenglykolu.

B) Pevná lipidová nanočástice: žluté jádro (tvořeno glyceridy a vosky s vysokou teplotou tání) obalené jednu vrstvou fosfolipidů, vně fosfoli-

pidů navázány molekuly polyetylenglykolu.

C1) Jednovrstevná uhlíková nanotuba.

C2) Vícevrstevná uhlíková nanotuba.

D) Dendrimery: G0–G3 generace, jádro tvořeno iontem kovu, koncové skupiny na povrchu dendrimerů udávají náboj molekuly.
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nek (pH, teplota, polarita média) spontán ně 

uspořádávají do dvojvrstvy [53– 55].

Jejich výhoda spočívá v lipidovém ma-

teriálu, který je základním stavebním ka-

menem bio logických membrán a je dobře 

odbouratelný. Nevýhodou těchto struktur 

je poměrně nízká stabilita, která může být 

zvýšena zavedením PEG do fosfolipidové 

dvojvrstvy (obr. 3A) [56]. Lipozomy nesoucí 

lék proti nádoru a konjugované s protilát-

kou proti transferinovému receptoru byly 

schopny prostoupit přes HEB a hromadit se 

v mozkové tkáni [57].

Pevné lipidové nanočástice
Pevné lipidové nanočástice vznikají z lipi-

dových nanoemulzí se zakomponovanými 

glyceridy a vosky s vysokou teplotou tání 

(obr. 3B). Při pokojové teplotě dochází k je-

jich přechodu z tekutého stavu do pevného. 

Pro svou přirozenou hydrofobicitu musejí 

být hydrofi lizovány např. PEG, polyvinyl alko-

holem či chitozanem, čímž se minimalizuje 

nespecifi cká vazba proteinů a snižuje se je-

jich vychytávání RES.

Mezi výhody tohoto typu nanočástic patří 

fyzická stabilita a rozpustnost, kapacita pro 

přenos velkého množství léku a jeho pomalé 

uvolňování, nízká vazba opsonínů a nízký vliv 

na tvorbu trombů [58]. Pevné lipidové nano-

částice konjugované s antidepresivním lékem 

venlafaxinem zvyšovaly transport tohoto léku 

do mozku bez indukce produkce p-glykopro-

teinu 1, který je odpovědný za intenzivní od-

straňování venlafaxinu z mozku [59].

Dendrimery
Dendrimery jsou vysoce větvené polymery, 

které se připravují postupnou syntézou, při 

níž se k jádru váží další vrstvy větvených mo-

nomerů. Jádro dendrimerů může být tvo-

řeno např. etylendiaminem (PAMAM dendri-

mery) [60] nebo iontem kovu (Cu2+, Pd2+, Pt2+, 

Ni2+, Fe3+ nebo Mn2+ [61]). Počet vrstev větve-

ných monomerů obalujících jádro se nazývá 

generace (G0, G1, G2 a vyšší; obr. 3D). Tyto 

vrstvy jsou zakončeny „koncovou skupinou“, 

kterou může být aminová skupina propůj-

čující dendrimerům polykationtový náboj 

(PAMAM dendrimery), karboxylová sku-

pina, peptid (peptidové dendrimery), aj. [62]. 

Například lék doxorubicin používaný pro 

léčbu nádorů neprochází přes HEB, pro-

tože je exportován z mozku p-glykoprotei-

nem. Pokud byl doxorubicin konjugován 

s PAMAM dendrimery, zvyšovala se jeho 

akumulace v mozku až šestkrát (ve srovnání 

s volným doxorubicinem) [63].

Široké spektrum typů koncových sku-

pin patří mezi největší výhody dendrimerů. 

Naopak jejich nevýhodou je vyšší toxicita 

stoupající s počtem vrstev (generací) [64].

Uhlíkové nanotuby
Uhlíkové nanotuby se díky svým výborným 

elektrickým vlastnostem dají využít v medi-

cíně jako nanosenzory či nanosondy [65– 67]. 

Vznikají z jednovrstevné formy grafi tu zvané 

grafén. Grafénový plát lze srolovat buď 

v jedné vrstvě za vzniku jednovrstevných na-

notub (SWCNT; obr. 3C1), nebo ve více vrst-

vách, které jsou koncentricky uspořádány 

jedna do druhé za vzniku mnohovrstevných 

nanotub (MWCNT; obr. 3C2). Průměr nano-

tub kolísá od 10 do 100 nm a délka může do-

sáhnout až několik mikrometrů.

Uhlíkové nanotuby mají tyčinkovitý tvar, 

na jehož povrchu a dovnitř dutiny lze navá-

zat velké množství molekul léku a transpor-

tovat je do mozku [44,68]. Karboxylované 

MWCNT modifi kované PEG s konjugovaným 

ligandem angiopep-2 pro LRP receptor (Low 

Density Lipoprotein Receptor-related Pro-

tein) dokáží prostoupit HEB a dopravit na-

vázaný lék do cílového místa v mozku [69]. 

Přes tyto výhody uhlíkových nanotub ne-

jsou stále uspokojivě vyřešeny problémy 

s jejich možnou toxicitou. Nemodifi kované 

nanotuby mohou na svůj povrch adsorbo-

vat životně důležité enzymy, jako je např. 

acetylcholinesteráza [68]. Navíc jsou obtížně 

degradovatelné a jejich hromadění v buňce 

může vést k jejímu poškození [44,70]. Napří-

klad u krevních destiček zvyšují MWCNT pro-

stup vápenatých iontů přes plazmatickou 

membránu a poškozují je [71,72]. Zavedení 

funkčních skupin, které naruší strukturu na-

notub, může přispět k jejich účin nější degra-

daci vnitrobuněčnými enzymy [43].

Uplatnění nanočástic v léčbě 
neurodegenerativních 
onemocnění
Současný stav výzkumu zaměřeného na vy-

užití nanočástic pro transport léků přes HEB 

ukazuje první úspěchy snah o transport na-

nočástic do cílových míst v mozku. Zhang 

et al využili tzv. dvojitého značení neboli za-

vedení dvou peptidů do povrchu polymer-

ních nanočástic. První peptid byl složen ze 

specifi cké sekvence aminokyselin zvyšující 

prostup nanočástic přes HEB. Druhý pep-

tid nesl specifi ckou sekvenci pro vazbu na 

Aβ
1– 42

 v amyloidových depozitech. Takto při-

pravené nanočástice byly schopny in vivo 

projít přes HEB a vázat se na amyloidové 

plaky [73]. Nanočástice však nebyly konjugo-

vány s molekulou léku. V tomto případě pak 

vznikají další možnosti postupu výzkumu. 

První možností je pro dvojité značení pou-

žít nanočástice, které samy dokáží pracovat 

s patologickou formou abnormálního pro-

teinu. Mezi takové nanočástice patří např. 

PAMAM a polypropyleniminové (PPI) dendri-

mery, které umí nejen inhibovat formování 

struktury beta skládaného listu [74], ale také 

účin ně brání tvorbě fibril vzniklých agre-

gací ně kte rých forem alfa-synukleinu, beta-

-amyloidu a prionového proteinu. Navíc roz-

rušují již vzniklé amyloidové fi brily [74,75]. 

Na druhou stranu při rozrušování amyloido-

vých fi bril alfa-synukleinu nedocházelo k je-

jich rozkladu na jednotlivé monomery, ale 

na jinou formu nerozpustných amorfních 

agregátů [74]. Podobně by mohly fungovat 

i uhlíkové nanotuby, neboť bylo ukázáno, že 

SWCNT na sebe dokáží nabalovat beta sklá-

dané listy molekul beta-amyloidu [76].

Druhou možností může být zakompo-

nování molekul léku do vnitřku nanočás-

tice a následné obalení nanočástic recep-

tory pro dvojité značení. K tomuto účelu by 

mohly být vhodné třeba pevné lipidové na-

nočástice, ve kterých inkubací s tekutými li-

pidy vznikají nepřesnosti v krystalové struk-

tuře. Tyto „mezery“ lze vyplnit molekulami 

léku, a zvýšit tak kapacitu nanočástice pro 

jejich množství. Tekuté lipidy navíc umož-

ňují lepší rozpouštění lipofilních léků než 

pevné lipidy [58]. Konjugace nanokapsulí 

s lipidovým jádrem a konjugovaným indo-

metacinem, který snižuje aktivaci mikroglií 

vzniklou v reakci na poranění (v tomto pří-

padě na akumulaci amyloidových depozitů), 

vedla po aplikaci beta-amyloidu (Aβ
1– 42

) do 

transgen ních myší pro AN ke snížení projevů 

zánětu a snížení aktivace mikroglií [77]. Kon-

jugace SWCNT s acetylcholinem a jejich apli-

kace do žaludku myší vedla k transportu ace-

tylcholinu do mozku a zvyšovala schopnost 

myší s AN učit se, a to až na úroveň zdravých 

jedinců [44].

Nanočástice lze také využít jako přena-

šeče malých inhibičních RNA schopných 

blokovat expresi genů zodpovědných za ně-

kte ré z dědičných forem neurodegenerativ-

ních onemocnění. Problém malých RNA je 

nízká účin nost transfekce. Transfekce buněk 

a následná inhibice genů byla výrazně zvý-

šena, pokud jsou malé RNA transporto-

vány do buněk prostřednictvím PAMAM 

dendrimerů [78,79].

Přes tyto povzbudivé výsledky bude za-

vedení nanočástic do běžné klinické praxe 
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ještě nějakou chvíli trvat, především z dů-

vodu nedořešené otázky jejich možné to-

xicity. Aplikace nanočástic ve zvířecích mo-

delech byla často spojena s nežádoucími 

účinky, jako je genotoxicita, poškození plic 

a kardiovaskulárního systému. Kromě toho 

zbývá ještě dořešit i technické otázky efek-

tivní konjugace molekul léku s nanočásti-

cemi a zavádění ligandů/ receptorů do jejich 

povrchu [80– 82].

Závěr
Současný výzkum v oblasti neurověd přináší 

řadu nových poznatků o příčinách vzniku 

neurodegenerativních onemocnění, jako je 

Alzheimerova, Parkinsonova nebo Creutz-

feldtova-Jakobova nemoc. Vzrůstající poro-

zumění mechanizmům patogeneze těchto 

chorob by mělo vyústit ve vytvoření kauzál-

ních terapeutických přístupů. Nedávné vý-

sledky prokázaly, že transport léků přes HEB 

za pomocí nanočástic je možný, a to i pro ta-

kové léky, které ji za normálních podmínek 

nejsou schopné překročit. Nanočástice se 

tak mohou stát klíčovou součástí budoucí 

účin né terapie. Další výzkum zaměřený na 

snížení jejich toxicity a snazší bio degradaci 

by měl vést k jejich brzkému využití v kli-

nické praxi. 
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