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Quantitative MRI Texture Analysis 
in Diff erentiating Enhanc  ing and Non-enhanc  ing 
T1-hypointense Lesions without Application 
of Contrast Agent in Multiple Sclerosis 

Kvantitativní analýza MRI textury pro 

rozlišení enhancujících a neenhancujících 

T1 hypointenzních lézí bez podání kontrastní 

látky u roztroušené sklerózy

Abstract
Aims: The aim of this study was to evaluate texture analysis (TA) in pre-contrast injection MR images to 

improve accuracy and to identify subtle diff  erences between enhanc  ing lesions (ELs), non-enhanc  ing 

lesions (NELs) and persistent black holes (PBHs). Materials and methodology: The MR image database 

comprised 90 patients; 30 of whom had only PBHs, 25 had only ELs and 35 neither EL or PBH. These 

were as ses sed by the proposed TA method. Up to 300 statistical texture features were extracted as 

descriptors for each ROI/ lesion. Diff  erences between the lesion groups were analyzed and evaluations 

were made for area under the receiver operat  ing characteristic curve (A
z
) for each signifi cant texture 

feature. Linear discriminant analysis (LDA) was employed to analyze signifi cant features and increase 

power of discrimination. Results: At least 14 texture features showed signifi cant diff  erence between NELs 

and ELs, NELs and PBHs, and ELs and PBHs. By us  ing all signifi cant features, LDA indicated a promis -

ing level of performance for clas sifi cation of NELs and PBHs with A
z
 value of 0.975 that cor responds to 

sensitivity of 94.3%, specifi city of 96.3%, accuracy of 95.5%. In clas sifi cation of ELs and NELs (or PBH), 

LDA demonstrated discrimination performance with sensitivity, specifi city and accuracy of 100% and 

A
z
 of 1. Conclusions: TA was determined as a reliable method, with potential for characterization and 

the method can be applied by physicians to diff  erentiate NELs, ELs and PBH in pre-contrast injection 

MRI imaging.

Souhrn
Cíle: Cílem této studie bylo zhodnotit analýzu textury (AT) na snímcích MR před podáním kontrastní látky 

z hlediska zlepšení přesnosti a rozlišení jemných rozdílů mezi enhancujícími lézemi (EL), neenhancujícími 

lézemi (NEL) a perzistentními černými dírami (persistant black holes; PBH). Materiál a metodika: Databáze 

zobrazení MR zahrnovala 90 pa cientů, z nichž 30 mělo pouze PBH, 25 mělo pouze EL a 35 nemělo ani 

EL ani PBH. Tato zobrazení byla zhodnocena pomocí navrhované metody AT. Bylo extrahováno na 

300 statistických texturních znaků jako deskriptorů každého ROI/ léze. Byly analyzovány rozdíly mezi 

skupinami lézí a byla změřena plocha pod křivkou (A
z
) pro každý významný texturní znak. K analýze 

signifi kantních znaků a ke zvýšení síly odlišení byla použita lineární diskriminantní analýza (LDA). 

Výsledky: Nejméně 14 texturních znaků prokázalo významný rozdíl mezi NEL a EL, NEL a PBH a EL a PBH. 

Při použití všech významných znaků naznačila LDA slibnou schopnost klasifi kace NEL a PBH s hodnotou 

A
z
 0,975, která odpovídá senzitivitě 94,3 %, specifi citě 96,3 % a přesnosti 95,5 %. U klasifi kace EL a NEL 

(nebo PBH) prokázala LDA diskriminační výkon odpovídající senzitivitě, specifi citě a přesnosti 100 % 

a A
z
 1. Závěry: AT byla vyhodnocena jako spolehlivá metoda s potenciálem charakterizovat NEL, EL a PBH 

a jako metoda, kterou mohou lékaři použít k rozlišení NEL, EL a PBH na snímcích MR před podáním kontrastní 

látky. 
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Introduction
Multiple sclerosis (MS) is an im mune-

med iated dis ease of the central nervous 

system that aff  ects mostly young adults [1]. 

Since 1980s magnetic resonance imaging 

(MRI) has been the most fre quently used 

technique for evaluat  ing MS lesions in 

the brain and spinal cord and to monitor 

progress of the dis ease [2,3]. An abnormal 

signal derived from an MS lesion may be 

caused by demyelination and increased 

water content of the brain in the vicinity 

of the lesion due to breakdown in the 

blood brain bar rier [4]. These changes and 

destruction in the matrix and lesion material 

can aff  ect image by increas  ing inherent time 

(relaxation and recovery time).

T2-weighted (T2WIs) and gadolinium-

-enhanced T1-weighted images (T1WIs) 

are sensitive methods that are used to 

monitor dis ease activity in subjects with 

MS [5,6]. The majority of new lesions will 

become enhanced and usual ly persist for 

2– 6 weeks [7]. Approximately 65– 80% of 

contrast-enhanc  ing lesions (ELs) initial ly 

appear as hypo-intense on T1WIs. Less than 

40% of these lesions will persist and become 

chronic, result  ing in a condition termed 

persistent black hole (PBH). The remain  ing 

40% of enhanc  ing lesions gradual ly return 

to isointense state due to remyelination 

and resolution of edema [8]. EL is a sensitive 

indicator of active infl am mation and it impairs 

a patient’s clinical status. PBHs also yield 

important information on areas of axonal loss 

and are as sociated with disability [5,6,9,10].

Conventional MRI does not detect 

microscopic tis sue changes and it has 

been indicated that the details are not 

visible to the human eye [11]. An MR image 

comprises diverse gray-level intensity, and 

various tis sue types have diff  erent textures. 

Texture of images describes complex 

visual patterns; show ar rangements of 

structures or sub-patterns and distribution 

of pixel intensities within an image 

domain [12,13]. At times, patterns within an 

image may be diff  erent, but this may not 

be detected by the human eye. Although 

a human can achieve texture in qualitative 

terms, mathematical ly defined texture 

properties require quantitative texture 

analysis (TA). TA can detect pathological 

dif  ferences that can not be perceived 

by the human eye us  ing conventional 

brain imaging MRI [11]. This mathematical 

technique increases quantifi cation of and 

information about lesions in the brain that 

would be undetectable by conventional 

measurements of lesion volume, intensity 

and shape [14].

Recent studies have employed TA to 

1 –  diff  erentiate between lesions, normal 

white matter and normal appear  ing white 

matter [11,15– 18]; 2 –  diff  erentiate between 

ELs and non-enhanc  ing lesions (NELs) [19– 21] 

and between transient and persistent black 

holes (PBH) [22]; 3 –  fol low up therapeutic 

response in MS patients [23]; 4 –  cor relate 

MRI texture with tis sue pathology [24]; this 

study provides additional information in 

support of this method.

Previous studies have indicated diff  erent 

texture features between PBHs and transient 

black holes and between ELs and NELs on 

a T2WI. Hence active infl am matory or axonal 

destruction can aff  ect the texture of a brain 

MRI. The aim in this study was to evaluate 

texture us  ing a non-invasive method of 

detect  ing changes in ELs, NELs and PBHs 

on brain MRI image in MS patients. To the 

best of our knowledge, this is the fi rst study 

to apply TA to evaluate diff  erences between 

ELs, NELs and PBHs.

Methods 
Patients and MRI acquisition

MS evaluation is general ly based on con-

ventional MRI imaging, fol low  ing the 

McDonald criteria 2010 [25]. MS patients 

with at least two attacks of neurological 

defi cit, with clinical or paraclinical evidence 

of involvement of two diff  erent regions in the 

brain, optic nerve or spinal cord were selected. 

Exclusion criteria included steroid treatment 

as it may strongly suppress appearance of ELs, 

and individuals who were alcoholics and/ or 

smokers to avoid potential confusion [26,27].

Ninety patients (27 males and 63 females) 

includ  ing 80 relapsing-remiting MS (RRMS), 

3 primary progressive MS (PPMS) and 7 second-

ary progressive MS (SPMS) were recruited for 

participation in this study, they were aged 

35.41 ± 9.84 (mean age ± standard deviation) 

with MS confirmed by a neurologist. These 

patients were divided into three groups: 

39 patients (11 males and 28 females aged 

34.72 ± 9.23) had MS lesions with no ELs or 

PBHs, 32 patients (9 males and 23 females aged 

35.31 ± 10.11) had PBHs only and 19 patients 

(7 males and 12 females aged 39.43 ± 9.82) had 

ELs only. To detect PBHs, we reviewed each 

patient’s imag  ing within the past 1 year.

T2WIs of each patient were acquired 

with a 1.5-T Siemens Trio scan ner (Siemens, 

Erlangen, Germany) us  ing the turbo spin 

echo sequence (TR = 4500 ms, TE = 100 ms, 

number of excitations (NEX) = 2, ma-

trix = 512*512, field of view (FOV) = 23 cm, slice 

thicknes s = 5 mm and inter-slice gap = 0.5 m m).

The imag  ing protocol included T1-weight -

ed spin-echo imaging (TR = 400 ms, TE =

= 11 ms, NEX = 2, matrix = 512*512, FOV =

= 23 cm, slice thicknes s = 3 mm and inter-slice

gap = 0.5 m m). Patients received 0.1 m mol/ Kg 

paramagnetic agent (Dotarem®, Sanofi , Aulnay-

sous-Bois, France). Post-contrast MR images 

were obtained 7 min after the injection.

Texture feature and regions 

of interest selection

MR image was inputted in the MaZda soft-

ware (version 4.6, Institute of Electronics, The 

Technical University of Lodz, Poland) for TA. 

In general, 116 ROIs consist  ing of 54 NELs, 

27 ELs and 35 PBHs were selected for 

discrimination and clas sifi cation. All lesions 

were chosen in cor respondence to the 

regions of post-contrast MRI images (Fig. 1). 

Up to 300 texture features were extracted 

that, based on Histogram (histogram 

distribution of the image), Absolute gradient 

(describes local distribution of grey level 

dif ferences and spatial variation of grey-

-level values), Run-length matrix (Run length 

matrix p (i) represent the number of times 

there is a run of length “j” with intensity “i”, i.e. 

Run length matrix counts of pixel runs with 

the specified gray-scale value and length 

in a given direction), Co-occur rence matrix 

(information about the distribution of pairs 

of pixels separated by a given distance and 

direction, i.e. represent the second order 

image histogram that contains probabilities 

of co-occur rence of pixel pairs with a given 

distance d (1, 2, 3, 4 and 5) and direction θ 

(0, 45, –45 and 90 degree) in image intensity 

levels Ng), Auto-regres sive model (based on 

this model, image pixels have an interaction 

with sur rounded pixels. Therefore, pixel 

intensity is a weighted sum of neighbour -

ing pixel intensities), and Wavelets (analyze 

natural nonstationary signals and be localized 

in both spatial and frequency domains. 

Wavelets decompose the image signals into 

frequency components us  ing independent 

spatial ly oriented frequency fi lters cascaded 

in a pyramidal structure) [12,28].

Statistical analysis

Data were tested for normality by the 

Kolmogorov– Smirnov test. One-way analysis 

of variance (ANOVA) was used to as sess dif-

ferences between groups (NEL, EL and PBH). 
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For significant texture features, post hoc 

Scheff  e or Tamhane’s T2 test was applied 

to compare between groups. A P-value 

of < 0.05 was considered signifi cant. An area 

under the receiver operat  ing characteristic 

(ROC) curve (A
z
) was calculated for each 

significant texture feature in order to 

evaluate over all performance of clas sifi cation 

between the groups [29]. A
z
 values were 

estimated beyond the 95% confi dence level.

Texture analysis 

and clas sifi cation

Texture features that showed signifi cant dif-

ference between the two groups were used 

for computerized multi parameter TA (MPTA) 

method. Linear discriminant analysis (LDA) 

was used to transform raw texture features 

to lower-dimensional spaces and to increase 

discriminative power; LDA seeks the most ef-

fi cient directions for maximal separation of 

features. LDA demonstrated that variability 

among feature vectors of the same class 

(within class scatter) was minimized and 

variability among the feature vectors of dif-

ferent clas ses (between class scatter) was 

maximized. Features proces sed by LDA were 

considered useful for pattern recognition 

and clas sifi cation as they put data of the 

same class closer together and data of dif-

ferent clas ses further apart. First nearest 

neighbor (1-NN) clas sifier was used for 

features result  ing from LDA. 

In order to compare performance of dia-

gnostics, three wel l-known indexes were 

calculated: accuracy (ACC), sensitivity (SEN) 

and specifi city (SPC). Their defi nitions are 

given as:

                                                N
TN

 + N
TP

(1) Accuracy (ACC) = ——————————

                                            NTN
 + N

FN
 + N

TP
 + N

FP

                                             N
TP

(2) Sensitivity (SEN) = —————

                                              NTP
 + N

FN

                                             N
TN

(3) Specifi city (SPC) = —————

                                              NTN
 + N

FP

Where N
TP

 and N
TN

 are the number of true 

positive and true negative cases, respectively. 

N
FP

 and N
FN

 are the number of false positive and 

false negative cases, respectively. In this study, 

clas sifi cation was performed between 1. NELs 

and ELs (positive – EL, negative – NEL); 2. NELs 

and PBH (positive = PBH, negative – NEL) and 

3. ELs and PBHs (positive – EL, negative – PBH). 

An A
z
 value was also calculated to evaluate 

over all performance of the proposed MPTA 

method. A
z
 values were estimated beyond 

the 95% confi dence level. Fig. 2 shows the 

CAD proces s  ing steps.

Results 
Texture feature changes 

between groups 

NELs vs. ELs

In general, 116 ROIs consist  ing of 54 NELs, 

27 ELs and 35 PBHs were selected for 

statistical analysis and clas sifi cation. 

Fig. 1. Sample of NEL, EL and PBH lesions on T2WI. All lesions on T2WI (left) were selec-
ted according to post-contrast corresponding (right) to NEL (A), EL (B) and PBH (C).

A

B

C
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Eighteen texture features showed signifi cant 

diff  erence between NELs and ELs: Cor relation 

S(1,-1) (Cor relat_S(1,–1)), Cor relat_S(1,1), Cor-

relat_S(1,0), Cor relat_S(0,2), Angular second 

moment S(5,0) (ASM_S(5,0)), ASM_S(1,-1), Dif-

ference variance S(0,1) (DV_S(0,1)) and Sum 

Entropy S(1,0) (SE_S(1,0)) from Co-occur rence 

matrix Where S(i, j) shows the direction of 

matrix construction and inter pixel distance 

i along rows and j along columns of the 

matrix; ‘high-high’ energy components in fi rst 

level wavelet decomposition (WavEnHH_s-1), 

‘low-high’ energy components in fi rst level 

wavelet decomposition (WavEnLH_s-1), 

WavEnLL_s-2 and WavEnLH_s-2 from Wavelet; 

Non-zero gradient matrix (Gr_nonzeros) 

and Kurtosis of absolute gradient (Gr_

Kurtosis) from Gradient; Short Run Emphasis 

in Horizontal direction (SRE_Horz) and in 

45-degree direction (SRE_45Dgr) Run Length 

Non-Uniformity in Vertical direction (RLNU_

Vert) from Run-length matrix and Mean from 

Histogram (Tab. 1).

NELs vs. PBHs

Fourteen texture features showed signifi cant 

diff  erence between NELs and PBHs: WavEnL

L_s-1, WavEnLL_s-2, WavEnLH_s-2 from Wave -

let; Mean from Histogram; Non-zero 

gradient matrix (Gr_nonzeros) from Gradient; 

Sum Average S(3–3) (SA_S(3–3)), SA_S(3,3), 

SA_S(3,0), Sum Variance S(2,2) (SV_S(2,2)), Cor-

relat_S(0,2) Cor relat_S(1,0), and SE_S(1,0) from 

Co-occur rence matrix; SRE_45Dgr and RLNU_

Vert from Run-Length matrix and (Tab. 2).

ELs vs. PBHs

Eighteen texture features showed signifi cant 

dif ference between NELs and PBHs: Dif-

ference Variance S(0,1) (DV_S(0,1)), DV_S(2,2), 

DV_S(0,4), Cor relat_S(1,1), Cor relat_S(1,–1), 

Cor relat_S(1,0), SA_S(4,0), SE_S(1,0) and 

Angular Second Moment S(0,1) (ASM_ 

S(0,1)) from Co-occur rence matrix; Gr_

nonzeros and Gr_ Kurtosis from Gradient; 

WavEnHL_s-1, WavEnLH_s-1, WavEnLL_s–2, 

WavEnHL_s-2, WavEnLL_s-3 from Wavelet; 

SRE_45Dgr from Run-length matrix and 

Mean from Histogram (Tab. 3).

Briefl y, the SE and DV measure any disorder 

or complexity and heterogeneity of an image. 

The cor relation feature is a measure of gray-

level linear dependencies in the image. SA 

represents the mean of gray-level image in 

the spatial domain. ASM measures textural 

uniformity. High value occurs when the gray-

level distribution has a constant. SRE measures 

distribution of short runs and would occur 

more often in a fi ne texture. RLNU measures 

similarity of run lengths within the image. The 

RLNU is expected small if the run lengths are 

not similar. Gr_nonzeros measures percentage 

of pixels with non-zero gradient. 

Area under the ROC curve for 

clas sifi cation of ELs, NELs and PBHs

ROC analysis indicated that texture features 

of Co-occur rence matrix (Cor relat_S(1,–1) and 

ASM_S(5,0)) and Wavelet (WavEnHH_s–1) 

had the highest A
z
 values in terms of dif-

ference between NELs and ELs. The A
z
 

value of Cor relat_S(1,-1), ASM_S(5,0) and 

WavEnHH_s-1 were 0.870, 0.868 and 0.859, 

respectively (Tab. 1).

Fig. 2. Overview of texture analysis pro-
cess on brain MRI images.

MRI axial 

T2WI brain 

image

ROI selection/

/features extracting

one way 

ANOVA test

texture analysis/

/LDA

features reduction

classifi cation/

/ROC analysis

enhancing 

lesions

non-enhancing 

lesions

persistent 

black holes

Tab. 1. Summary of performance for signifi cant texture features in classifi cation of 
NELs and ELs and the associated P-values.

Texture Features Post Hoc Tests (P-value) Az valuea

Correlat_S(1,-1) P < 0.001 0.870 (0.794, 0.945)

ASMS(5,0) P < 0.001 0.868 (0.777, 0.958)

WavEnHH_s-1 P < 0.001 0.859 (0.754, 0.965)

ASM_S(1,-1) P < 0.001 0.826 (0.725, 0.928)

Correlat_S(1,1) P < 0.001 0.822 (0.729, 0.916)

Mean P < 0.001 0.822 (0.693, 0.950)

Gr_nonzeros P < 0.001 0.806 (0.686, 0.925)

SE_S(1,0) P < 0.001 0.805 (0.701, 0.909)

DV_S(0,1) P < 0.001 0.802 (0.690, 0.915)

WavEnLL_s-2 P < 0.001 0.787 (0.654, 0.921)

Correlat_S(1,0) P < 0.001 0.776 (0.678, 0.875)

WavEnLH_s-1 P < 0.001 0.774 (0.657, 0.892)

SRE_45Dgr P < 0.001 0.766 (0.640, 0.893)

Gr_Kurtosis P = 0.015 0.748 (0.618, 0.879)

RLNU_Vert P < 0.001 0.729 (0.619, 0.840)

WavEnLH_s-2 P < 0.001 0.727 (0.593, 0.861)

Correlat_S(0,2) P = 0.008 0.691 (0.555, 0.827)

SRE_Horz P = 0.012 0.667 (0.512, 0.821)

A
z
 – area under ROC curve; ASM – indicates angular second moment; Gr_nonzeros – non-zero 

gradient matrix; SE – sum entropy; DV – diff erence variance; WavEnHH, WavEnLL and Wa-

vEnLH – ‘high-high’, ‘low-low’ and ‘low-high’ energy components in wavelet decomposition 

respectively; SRE_45Dgr and SRE_Horz – short sun emphasis in 45-degree and horizontal di-

rection respectively; Gr_Kurtosis – kurtosis of absolute gradient; RLNU_Vert – run length non-

-uniformity in vertical direction; a numbers in parentheses are 95% CI.
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The A
z
 values of texture features of Wavelet 

(WavEnLL_s-2, A
z
 = 0.794) and Histogram 

(Mean, A
z
 = 0.776) were higher than others in 

terms of diff  erence between NELs and PBHs. 

The A
z
 values of each signifi cant feature are 

listed in Tab. 2.

Texture features of Co-occur rence matrix 

(DV_S(0,1) and Cor relat_S(1,1)) had higher A
z
 

values in terms of diff  erence between ELs 

and PBHs. The A
z
 value of DV_S(0,1) and Cor-

relat_S(1,1) were 0.833 and 0.831, respectively 

(Tab. 3).

Texture analysis and clas sifi cation

Dia gnostic performance of the MPTA for clas-

sifi cation and comparison between the NEL 

and PBH groups are shown in Tab. 4. Fig. 3 

shows ROC curves of the proposed MPTA 

that demonstrate excel lent performance in 

terms of clas sifi cation between ELs and PBHs 

and between ELs and NELs with A
z
 = 1 that 

cor responds to sensitivity, specificity and 

accuracy of 100% (Tab. 4). Discrimination 

power was achieved with A
z
 value of 0.975, 

cor respond  ing to sensitivity of 94.3%, 

specifi city 96.3% and accuracy 95.5% (Fig. 3). 

Discrimination distributions for LDA are 

il lustrated in the majority of discriminat  ing 

features direction and show that LDA had 

the greatest power to discriminate between 

ELs and PBHs and between ELs and NELs 

(Fig. 4).

Discus sion 
Discrimination between ELs, NELs and 

PBHs is one of the most critical factors to 

improve the initial dia gnosis and ther apy. 

The primary objective of this study was to 

evaluate texture ability as a non-invasive 

method to distinguish between NELs, ELs 

and PBHs. Results of comparisons showed 

a signifi cant diff  erence in terms of texture 

features between the three groups. The 

results of this study demonstrated that the 

TA was highly accurate in dif ferentiat  ing 

NELs (or PBHs) from ELs and NELs from PBH. 

The best results were driven with A
z
 of 1 in 

diff  erentiat  ing between NELs (or PBHs) and 

ELs (Fig. 3).

In general, accord  ing to the A
z
-value, 

Co-occur rence matrix features had higher 

performance than other feature groups in 

terms of diff  erentiation between NELs (or 

PBHs) and EL but Wavelet features had an 

advantage over the other feature groups 

in terms of dif ferentiation between NELs 

and PBHs. The highest performance in clas-

sification was achieved by the Co-occur-

Tab. 2. Summary of performance for signifi cant texture features in classifi cation 
of NELs and PBHs and the associated P-values.

Texture Features Post Hoc Tests (P-value) Az valuea

WavEnLL_s-2 P < 0.001 0.794 (0.693, 0.894)

Mean P < 0.001 0.776 (0.671, 0.881)

Gr_nonzeros P = 0.006 0.767 (0.665, 0.869)

SA_S(3–3) P < 0.001 0.767 (0.660, 0.875)

WavEnLL_s-1 P < 0.001 0.759 (0.693, 0.897)

SA_S(3,3) P < 0.001 0.756 (0.647, 0.865)

SA_S(3,0) P < 0.001 0.740 (0.627, 0.853)

Correlat_S(0,2) P = 0.037 0.680 (0.565, 0.796)

SRE_45Dgr P = 0.042 0.666 (0.552, 0.779)

SE_S(1,0) P = 0.029 0.660 (0.547, 0.773)

SV_S(2,2) P = 0.027 0.631 (0.516, 0.746)

RLNU_Vert P = 0.025 0.631 (0.514, 0.748)

Correlat_S(1,0) P = 0.439 0.626 (0.511, 0.741)

WavEnLH_s-2 P = 0.001 0.608 (0.478, 0.739)

A
z
 – area under ROC curve; WavEnLL and WavEnLH – ‘low-low’ and ‘low-high’ energy com-

ponents in wavelet decomposition respectively; Gr_nonzeros – non-zero gradient matrix; 

SA – sum average; SRE_45Dgr – short sun emphasis in 45-degree direction; SE – sum entropy; 

SV – sum variance; RLNU_Vert – run length non-uniformity in vertical direction; a numbers in 

parentheses are 95% CI

Tab. 3. Summary of performance for signifi cant texture features in classifi cation of 
ELs and PBHs and the associated P-values.

Texture Features Post Hoc Tests (P-value) Az valuea

DV_S(0,1) P < 0.001 0.833 (0.724, 0.942)

Correlat_S(1,1) P < 0.001 0.831 (0.720, 0.942)

DV_S(2,2) P = 0.001 0.816 (0.704, 0.927)

Gr_ Kurtosis P = 0.011 0.813 (0.701, 0.924)

ASM_ S(0,1) P < 0.001 0.794 (0.672, 0.915)

Correlat_S(1,-1) P < 0.001 0.792 (0.679, 0.904)

Mean P = 0.001 0.759 (0.611, 0.906)

WavEnLH_s-1 P < 0.001 0.739 (0.610, 0.867)

SA_S(4,0) P < 0.001 0.739 (0.589, 0.888)

WavEnHL_s-1 P = 0.006 0.737 (0.608, 0.865)

DV_S(0,4) P = 0.030 0.733 (0.607, 0.859)

SE_S(1,0) P = 0.001 0.726 (0.579, 0.873)

WavEnHL_s-2 P=0.004 0.723 (0.593, 0.853)

Correlat_S(1,0) P = 0.008 0.723 (0.593, 0.852)

WavEnLL_s-2 P = 0.002 0.710 (0.552, 0.868)

WavEnLL_s-3 P = 0.001 0.696 (0.537, 0.856)

SRE_45Dgr P = 0.006 0.683 (0.532, 0.833)

Gr_nonzeros P < 0.001 0.680 (0.523, 0.838)

A
z
 – area under ROC curve; DV – diff erence variance; Gr_Kurtosis – kurtosis of absolute gra-

dient; ASM – Angular Second Moment; WavEnLH, WavEnHL and WavEnLL – ‘low-high’, ‘high-

-low’ and ’low-low’ energy components in wavelet decomposition respectively; SA – sum 

average; SE – sum entropy; SRE_45Dgr – short sun emphasis in 45-degree direction; Gr_non-

zeros – non-zero gradient matrix; a numbers in parentheses are 95% CI.
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Cor relat_S(1,–1) and DV_S(0,1) were the A
z
 

value of 0.870 and 0.833, respectively.

Based on significant texture features, 

EL had a higher Mean (or intensity) than 

PBH and NEL on T2WI. These dif ferences 

arise from the result of demyelination and 

increased water content of the lesions and 

ineff  ective spin-spin interaction. The result of 

this ineff  ective interaction caused increased 

T2 relaxation time and intensity. It has been 

shown that tis sue-relaxation rates in pre-

contrast injection phase showed signifi cant 

diff  erences between ELs and NELs as ELs 

hav  ing a higher mean transverse relaxation 

rate and so appeared brighter in T2WI [30]. 

Our study confi rmed this result by us  ing TA 

that did not require measurement of tis sue-

-relaxation rate. On the other hand, results 

indicate that texture features based on 

Gradient, Co-occur rence matrix and Wavelet, 

EL had less heterogeneity in pixel intensity 

distribution than PBH (or NEL) and PBH 

had less heterogeneity than NEL on T2WI. 

On the other hand, accord  ing to the Run-

length matrix based features, EL had fi ner 

texture than PBH (or NEL) and PBH had fi ner 

texture than NEL on T2WI. Several studies 

have evaluated texture features for dif-

ferentiation of lesions in MS subjects. In this 

regard, dynamic texture parameter analysis 

(DTPA) was used to detect pathological 

changes between ELs and NELs by dynamic 

susceptibility contrast-enhanced imaging. 

It has been shown that the first order 

texture features in DTPA were useful for dif-

ferentiation of NELs and ELs [19,20]. Yu et al. 

examined 8 texture features (5 Run-length 

matrix and 3 Histogram features) to dif-

ferentiate 9 ELs and 23 NELs with 100% 

accuracy [21].

Zhang et al. indicated that TA based on 

Polar Stockwell transform were useful to fi nd 

diff  erences between persist and transient 

acute black holes us  ing conventional 

T1WI [22]. In this study, first and second 

(or high) order texture features such as 

Run-length matrix, Co-occur rence matrix 

and Wavelet features were used to detect 

subtle diff  erences in ELs, NELs and PBHs in 

conventional T2WIs.

Researches in recent years have indicated 

that advanced MRI techniques have 

significantly improved conventional MRI 

techniques [31]. In this regards, magnetization 

transfer imaging, Diff  usion Tensor Imaging, 

proton MRI spectroscopy have the capacity 

to discern between ELs and NELs (or 

PBHs) [30, 32– 35]. However, up till now, 

features alone to clas sification groups. In 

this regard, A
z
 value of LDA in clas sifi cation 

NELs and PBHs were 0.975 and this cor-

responded to sensitivity of 94.3%, specifi city 

of 96.3% and accuracy of 95.5%, while the 

highest level of performance was achieved 

by WavEnLL_s-2 with A
z
 = 0.794. LDA yielded 

excel lent performance in clas sify  ing NELs 

from ELs and PBHs from ELs with A
z
 = 1, 

while the highest performance achieved by 

rence matrix based feature (Cor relat_S(1,-1)) 

with A
z
 = 0.870. Among the texture features, 

there was a signifi cant diff  erence between 

the three groups and Run-length matrix 

features were less sensitive than the others 

as the features groups had a lower A
z
-value 

(rang  ing from 0.631 to 0.766).

A
z
 values ordered by LDA us  ing all 

signifi cant texture features had a higher level 

of performance than each of the texture 

Tab. 4. Diagnostic performance of proposed computer aided diagnostic system for 
classifi cation of NELs, ELs and PBHs.

Group SEN (%) SPC (%) ACC (%) Az valuea Correct 
Classifi cation 

NEL vs. PBH 94.3 96.3 95.5 0.975 (0.950, 1) 85/89 (95.5%)

NEL vs. EL 100 100 100 1 81/81 (100%)

EL vs. PBH 100 100 100 1 62/62 (100%)

SEN – sensitivity; SPC – specificity; ACC – accuracy; PPV – positive predictive value; 

NPV – negative predictive value;  A
z

 – area under ROC curve; a – numbers in parentheses are 

95% CI.

Fig. 3. The ROC curve diagrams for texture analysis with LDA in classifi cation of NELs, ELs 
and PBHs.
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tion of magnetic resonance imag  ing to the dia gnosis 

of multiple sclerosis. Neurology 1999;53(3): 448– 56. doi: 

10.1212/ WNL.53.3.448.

15. Zhang J, Tong L, Wang L, et al. Texture analysis of mul-

tiple sclerosis: a comparative study. Magn Reson Imag -

ing 2008;26(8):1160– 6. doi: 10.1016/ j.mri.2008.01.016.
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analysis in multiple sclerosis: toward a clinical analysis 

protocol. Acad Radiol 2010;17(6):696– 707. doi: 10.1016/ j.
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17. Loizou CP, Mur ray V, Pattichis MS, et al. Multiscale am-
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sions by dynamic texture parameter analysis (DTPA). 
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tion of Enhanc  ing MS Lesions by Dynamic Texture Para-
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aging. Biomed Res Intl 2016. doi: 10.1155/ 2016/ 9578139.

Conclusion 
General ly, our results indicate that TA is 

a useful tool for discrimination of ELs, NELs 

and PBHs by a conventional MRI sequence. 

The main advantage of this method is that it 

can be an auxiliary tool to improve dia gnostic 

accuracy and to provide new insights into 

lesions us  ing conventional MRI sequences. 

Furthermore, it incurs no additional cost, 

pulse sequences or scan n  ing time. TA can be 

an auxiliary tool to help physicians improve 

their understand  ing of MS pathophysiology 

in conventional MRI sequences.
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