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Matematické modelování hemodynamiky 
mozkových aneuryzmat a možný přínos v klinické 
praxi z pohledu neurochirurga

Computational fl uid dynamics of intracranial 

aneurysms and its potential contribution 

in clinical practice from a neurosurgeon’s 

perspective

Souhrn
V posledních letech se rozvinula metodika počítačového modelování toku tekutin 

v cerebrovaskulární problematice, především pak v oblasti intrakraniálních aneuryzmat. Cílem 

většiny studií je pochopit patofyziologii vzniku, růstu a ruptury mozkových výdutí a určit ty rizikové 

hemodynamické parametry, které k těmto procesům vedou. V naší práci shrnujeme současný stav 

počítačového modelování toku tekutin především z pohledu chirurgie mozkových aneuryzmat 

a zaměřujeme se na možný přínos pro klinickou praxi. 

Abstract
Computational fl uid dynamics have developed in the area of cerebrovascular dis eases in recent 

years, especial ly in the research of intracranial aneurysms. The goal of most studies is to understand 

the pathophysiology of the initiation, growth and rupture of brain aneurysms and determine those 

risk hemodynamic parameters that lead to such proces ses. In our paper, we sum marize the cur rent 

state of art computational fl uid dynamics especial ly from a surgical point of view of intracranial 

aneurysms and we focus on its pos sible contribution in clinical practice.
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Úvod
Nejčastější příčinou spontán ní subarach-

noidální hemoragie (SAH) je ruptura intra-

kraniální výdutě neboli aneuryzmatu. V ČR 

ošetříme ročně přibližně 700 mozkových vý-

dutí, polovinu endovaskulárně a druhou po-

lovinu chirurgicky. Z toho je 60 % prasklých 

aneuryzmat, které se projeví jako různě těžká 

forma SAH, a 40 % neprasklých výdutí řeše-

ných preventivně. Prevalence neprasklých 

intrakraniálnich aneuryzmat v dospělé po-

pulaci je asi 3 % [1,2] a pouze malé procento 

z nich praskne [3]. Rozvoj a rozšíření neu-

rozobrazovacích metod vede k jejich zvýše-

nému záchytu. Zatímco v roce 1998 byl na 

Neurochirurgické klinice v Ústí nad Labem 

podíl ošetřených neprasklých aneuryzmat 

na celkovém počtu 20 %, v posledních něko-

lika letech se podíl ošetřených neprasklých 

aneuryzmat pohybuje okolo 50 %. Proto je 

problematika indikací ošetření neprasklých 

intrakraniálních aneuryzmat stále aktuál-

nější. Jedná se o preventivní výkon s rizikem 

komplikací, které se dle různých studií po-

hybuje v rozmezí 7,7– 28,9 % [4,5] a mortali-

tou 0– 3,2 % [5]. Na druhou stranu je ruptura 

aneuryzmatu spojená s vysokou morbiditou 

a mortalitou. Ve vyspělých zemích (Japonsko, 

USA, Evropa) je riziko úmrtí pa cientů, kteří se 

dostanou do nemocnice 27– 44 % [6]. K tomu 

dalších 12– 15 % jedinců zemře ještě před 

převozem do zdravotnického zařízení. Dů-

ležitý je proto správný výběr pa cientů k pre-

ventivnímu ošetření na základě hodnocení 

rizikových faktorů ruptury. Při znalosti rizika 

ošetření mozkové výdutě na daném praco-

višti by pak bylo možno relativně jednoduše 

nabídnout nejlepší možné řešení –  pokud 

bude riziko ošetření vyšší, je lepší pouhá ob-

servace, v opačném případě pak můžeme 

doporučit aktivní ošetření aneuryzmatu [7]. 

Přirozené riziko ruptury mozkového aneu-

ryzmatu je samozřejmě multifaktoriální. 

Mezi hlavní faktory patří velikost aneury-

zmatu, jeho morfologie a lokalizace, dále 

anamnéza předchozí SAH, arteriální hyper-

tenze, kouření a pohlaví. Mezinárodní tým 

autorů se snažil kvantifi kovat vliv jednotli-

vých rizikových faktorů po zohlednění šesti 

nejvýznamnějších studií zabývajících se ne-

prasklými intrakraniálními aneuryzmaty [8]. 

Vyvinuli tzv. skóre PHASES, které převádí 

výše uvedené rizikové faktory do kvantifi -

kační škály. Název PHASES je souhrnem po-

čátečních písmen šesti hlavních rizikových 

faktorů –  etnikum (P –  population), hyper-

tenze (H –  hypertension), věk (A –  age), ve-

likost aneuryzmatu (S –  size), anamnéza SAH 

z jiného aneuryzmatu (E –  earlier subarach-

noid hem morhage from another aneurysm) 

a lokalizace aneuryzmatu (S – site of aneu-

rysm). Výsledné skóre (od nejmenší hod-

noty < 2 po nejvyšší > 12) se pak převádí na 

5leté riziko ruptury. O rok později publikoval 

tým 69 autorů ještě komplexnější skórovací 

systém (The Unruptured Intracranial Aneu-

rysm Treatment Score; UIATS). Výsledkem je 

relativně hrubá kvantifi kace poměru mezi 

přirozeným rizikem a rizikem intervence [9].

Veškerá skórovací schémata jsou založena 

na hodnocení rizikových faktorů ruptury zís-

kaných z rozsáhlých statistických studií. Nic-

méně v patofyziologii ruptury mozkových 

aneuryzmat hraje zásadní roli poměr mezi 

kvalitou cévní stěny a parametry toku krve 

(hemodynamika). Právě výše uvedené rizi-

kové faktory (kouření, arteriální hypertenze, 

věk) ovlivňují jak kvalitu stěny cévy, tak i he-

modynamiku. Zatímco hodnocení kvality 

stěny cévy neinvazivně je v samých počátcích, 

kvantifikace parametrů hemodynamiky je 

dnes již možná. Matematické modelování he-

modynamiky (computational fl uid dynamics; 

CFD) je progresivně se rozvíjející mezi oborový 

směr, jehož výsledky se v ně kte rých případech 

mohou zúročit v klinické praxi [10]. Cílem naší 

práce je podat krátký souhrn současného 

stavu modelování hemodynamiky v proble-

matice mozkových aneuryzmat z pohledu 

neurochirurga s důrazem na možné uplatnění 

výsledků výzkumu v klinické praxi.

Matematické modelování 
hemodynamiky
Vlastní proces modelování hemodynamic-

kých parametrů se skládá z několika kroků. 

Vytvoření 3D modelu se děje pomocí ma-

nuální či automatické segmentace. Jako zdro-

jová data se využívají angiografi cká vyšetření 

(3D angiografie, CTA či MRA). Každá z metod 

má své limitace (kalcifi kace, tokové artefakty 

apod.) Několik studií se snažilo posoudit 

vztah mezi různými zobrazovacími vyšetře-

ními [11,12]. V jedné takové studii porovná-

vali autoři výsledky CFD získané při segmen-

taci z CTA či digitální subtrakční angiografie 

(DSA) [11]. V závěru autoři konstatují, že i přes 

kvantitativní rozdíly v jednotlivých parame-

trech hemodynamiky mezi CTA a DSA seg-

mentovanou skupinou byly základní charak-

teristiky toku u obou skupin shodné. 

V dalším kroku je na takto vytvořeném geo-

metrickém modelu proveden výpočet s po-

mocí Navier-Stokesových rovnic, jež popisují 

proudění nestlačitelné vazké tekutiny. Pou-

žití numerického řešení Navierových-t rov -

nic v sobě obsahuje také předpoklad lami-

nárního proudění. Jsou zkoumány možné 

vlivy jevů, které nejsou tímto modelem za-

chyceny, např. vliv turbulentního proudění 

nebo vliv změny viskozity v závislosti na 

rychlosti smyku [13].

Tyto výpočty charakterizují proudění, tj. 

podávají kompletní informaci o rychlosti te-

kutiny a tlaku na cévní stěnu a o veličinách 

z nich odvozených jako např. tenzor napětí. 

Díky neurčitosti v popisu oblasti a také zada-

ných okrajových podmínkách může být va-

riabilita těchto veličin významná, avšak určité 

globální odvozené veličiny –  smykové napětí 

(wall shear stres s; WSS) a oscilační smykový 

index (oscil latory shear index; OSI) se sho-

dují pro určitou variaci v přesnosti numeric-

kých řešení [14]. WSS je defi nováno jako tlak, 

který působí paralelně s lumen cévy, krevním 

tokem. OSI pak popisuje rozdíl mezi vektorem 

WSS a tokem krve v průběhu srdečního cyklu.

Vývoj intrakraniálního aneuryzmatu mů-

žeme rozdělit na tři fáze –  iniciaci, růst a sta-

bilizaci. Jen malé procento aneuryzmat je 

nestabilních, progreduje a nakonec skončí 

rupturou. Právě růst, změna tvaru a ruptura 

aneuryzmatu jsou ty situace, které se sna-

žíme pomocí matematického modelování 

pochopit a odhadnout riziko vzniku těchto 

kritických fází vývoje. 

Hemodynamika a vznik 
mozkových aneuryzmat
Vznik výdutě je způsoben nepoměrem mezi 

tahovým napětím ve stěně cévy a hemody-

namickými inzulty, kterým je stěna vysta-

vena. Tlakové napětí ovlivňuje obrat, syntézu 

a rozpad kolagenu uvnitř cévní stěny. Intra-

kraniální cévy jsou charakteristické malým 

průměrem s vysokým krevním průtokem. 

Proto jsou ovlivněny WSS krevních částic pů-

sobících na jejich stěnu. WSS je detekováno 

endoteliálními buňkami, které tyto mecha-

nické signály transformují na bio logické a tím 

zajištují homeostázu a remodelaci stěny 

cév [15]. Patologické hodnoty WSS pak navo-

zují změny ve stěnách přenášené endoteliál-

ními buňkami, jako jsou prozánětlivé reakce, 

aktivace metaloproteináz, degradace extra-

celuárního matrixu, destrukční remodelace 

či úmrtí buněk. Tlakové napětí vyvolá tahové 

napětí v cévní stěně, na které reagují hladké 

svalové buňky, fi broblasty a myofi broblasty 

regulující dynamiku kolagenu [16,17]. Právě 

v bifurkaci intrakraniálních cév je WSS nej-

vyšší, což přispívá k rozvoji aneuryzmat [18].

Geometrie cévní stěny neustále ovlivňuje 

charakter toku a jeho parametry. Větvení cév 
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Obr. 1. Růst intrakraniálního aneuryzmatu a matematický model hemodynamických parametrů. AWSS – průměrné smykové napětí

A – CTA z roku 2011 zobrazuje bilaterální karotická aneuryzmata v segmentu kavernózního splavu. 

B – CTA z roku 2017 prokazuje růst obou aneuryzmat, vlevo je již aneuryzma gigantické, v max. rozměru dosahuje 35 mm. 

C – CTA u stejné pacientky ukazuje, jak je růst kavernózních aneuryzmat ovlivněn okolními kostními strukturami báze lební (šipka ukazuje 

místo růstu aneuryzmatu).

D – Hemodynamické parametry kalkulované u gigantického aneuryzmatu kavernózního splavu vlevo ukazují, že místa růstu jsou v oblastech 

s nízkým smykovým napětím (šipka).

Fig 1. Growth of intracranial aneurysm and computational fl uid dynamics analysis. AWSS – average wall shear stress

A – CTA from 2011 shows bilateral carotid aneurysms  in cavernous segment. 

B – CTA from 2017 shows growth of both aneurysms, where the left-sided one is already giant with a max. diameter of 35 mm. 

C – CTA of the same patient shows how the growth of the left cavernous aneurysms is infl uenced by surrounding bony structures of the 

skull base (arrow shows the expanding part of the aneurysm).

D – Hemodynamic parameters in a giant aneurysm of the left cavernous segment show that the area of growth is correlated with low wall 

shear stress (arrow).

A

C

B

D
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na bázi mozku na Wil lisově okruhu gene-

ruje v bifurkacích cév komplexní charakter 

toku s vysokým WSS, což vede k remodelaci 

cévní stěny a potenciálně vzniku mozkového 

aneuryzmatu [19,20]. Vysoké WSS nejspíše 

spouští kaskádu na buněčné úrovni, která 

vede k histologickým změnám cévní stěny 

s následným oslabením. Navíc anatomické 

variace cév na bázi mozku (změna velikosti 

cév, úhlů mezi cévami, ageneze cév, např. ka-

rotid apod.) vedou k dalším atypiím v hemo-

dynamice a zvýšení rizika vzniku mozkového 

aneuryzmatu. Sami jsme z klinické praxe ta-

kový příklad raritně uloženého aneuryzmatu 

na junkci zadní mozkové tepny (P12) a zadní 

spojovací tepny (PCom) u pa cienta s uzávě-

rem obou karotických tepen popsali [21].

Dalším patofyziologickým mechanizmem 

vzniku aneuryzmatu je vliv WSS na sekreci fak-

torů z endoteliálních buněk, jako jsou oxid 

dusnatý (NO), prostaglandiny nebo endoteliální 

růstové faktory. Tyto pak vedou ke změně cév-

ního napětí či remodelaci cévní stěny. V oblas-

tech s nízkým WSS, tedy v zónách, kde stagnuje 

krevní tok, dochází k adhezi leukocytů pomocí 

adhezivních molekul, jako je vascular adhe-

sion molecule-1 (VAM-1). Adheze leukocytů pak 

může vést k aktivací imunitních a zánětlivých 

změn, které nabourávají stávající strukturu cévní 

stěny a mohou vést k jejímu zeslabení. Tlakové 

působení na cévní stěnu vede k lokální dilataci 

a tím iniciaci mozkového aneuryzmatu. Naopak 

vysoké WSS vede ke zvýšení koncentrace NO 

a inhibici proliferace hladkých svalových buněk 

v cévní stěně. Na druhou stranu cévní stěna může 

být oslabená rozličnými získanými (arteriální hy-

pertenze, kouření) nebo geneticky danými fak-

tory. Existují ně kte rá hereditární onemocnění, se 

kterými je spojován vyšší výskyt mozkových vý-

dutí jako autozomálně dominantní polycystóza 

ledvin, Ehler-Danlosův syndrom typ IV nebo fi b-

romuskulární dysplázie. Tato onemocnění snižují 

práh pro patologickou odpověď cévní stěny na 

hemodynamický inzult [16,17]. 

Bočná (nástěn ná) aneuryzmata jsou urči-

tou specifi ckou podskupinou intrakraniál-

ních aneuryzmat. Mantha et al provedli stu-

dii, ve které porovnali WSS právě u pa cientů 

s bočnými aneuryzmaty a cévou upravenou 

virtuálním odstraněním aneuryzmatu [22]. 

Tato studie ukázala, že WSS je v místě vzniku 

budoucího aneuryzmatu nízké, což je nej-

spíše dáno stagnací krevního toku. 

Hemodynamika a růst 
mozkových aneuryzmat
Vznik aneuryzmatu je následován buď jeho 

stabilizací, nebo dalším růstem s rizikem rup-

tury. Roční riziko růstu je u 3– 6 % všech aneu-

ryzmat [4,11,12] a 2,6– 4,5 % všech malých 

aneuryzmat [4,7,12] (obr. 1A, B). Růst aneuryz-

matu je známkou jeho instability a vyššího 

rizika ruptury. Proto je tendence takováto 

aneuryzmata preventivně ošetřit. Aneuryz-

mata mohou růst buď jako celek, nebo může 

dojít jen k růstu v určité malé oblasti (fokální 

růst) s rozvojem tzv. blebu či sekundárního 

aneuryzmatu. Několik studií ukázalo, že glo-

bální růst probíhá spíše v oblastech níz-

kého WSS a vysokého OSI [23] (obr. 1C). Na 

druhou stranu oblasti vysokého WSS s vel-

kým gradientem WSS způsobují remodelaci 

v oblasti krčku aneuryzmatu [2,24,25]. Machi 

et al posuzovali vztah mezi WSS a typem 

růstu. U aneuryzmat s fokálním růstem bylo 

v místě růstu WSS nízké WSS s vysokým OSI, 

zatímco u aneuryzmat s globálním růstem 

bylo WSS vysoké s vysokým prostorovým 

gradientem WSS [26]. Nicméně zásadním 

faktorem je dynamika v čase. Cebral et al zjis-

tili, že rozvoj sekundárních váčků („blebs”) 

probíhá v místech s vysokým WSS a po jejich 

formaci dojde k jeho snížení [25]. Bude třeba 

dalších studií s větším počtem aneuryzmat. 

Dosud největší studie zabývající se hemody-

namikou a růstem byla založena na hodno-

cení „pouhých” 27 aneuryzmat [27]. 

Existuje několik studií, které hodnotí vliv 

WSS na růst aneuryzmatu s různými vý-

sledky. Meng et al navrhli koncept, ve kte-

rém jak vysoké, tak nízké WSS hrají úlohu 

v růstu a ruptuře aneuryzmat, přičemž se 

liší v mechanizmu působení [16]. Dle to-

hoto konceptu vysoké WSS vede spíš k akti-

vaci hladkých svalových buněk a fi broblastů 

(mural-cell mediated pathway), zatímco 

nízké WSS vede k aktivaci zánětlivých buněk 

(infl am matory-cell mediated pathway). Proti 

tomuto konceptu však jde jedna z prvních 

studií korelujících hemodynamické mode-

lace s histologií; v této byl zánět asociován 

s vyšším tokem vč. zvýšeného WSS [28].

Růst aneuryzmatu je ovlivněn nejen vnitř-

ními faktory, ale také okolním prostředím, 

které může významně ovlivnit jeho tvar 

a růst. Příkladem jsou kostní struktury baze 

lební u aneuryzmat vnitřní karotidy či bazi-

lární tepny apod. [26] (obr. 1D). 

Hemodynamika ve vztahu 
k riziku ruptury aneuryzmatu
Degenerace stěny aneuryzmatu postu-

puje od krčku směrem ke kopuli vaku. Rup-

tura aneuryzmatu většinou nastane v místě 

apexu, což je také často oblast nízkého WSS. 

Tvar vaku ovlivňuje charakter toku a tím i jeho 

jednotlivé vlastnosti. Uvnitř aneuryzmat 

s úzkým krčkem může být pomalý tok s recir-

kulacemi, což se projeví nízkým WSS vedou-

cím ke zvýšené degeneraci cévní stěny. 

Hemodynamické změny uvnitř aneuryz-

matu jsou přenášeny bio logickými signály 

dovnitř cévní stěny a vedou tak k jejím mi-

kroskopickým změnám [29]. NO je klíčový 

mediátor nízkého WSS a oscilací ve WSS. 

Nízké WSS dále podporuje expresi adheziv-

ních molekul, jako je VCAM-1 a ICAM-1. 

Velké množství studií se zaměřilo na roz-

díly v hemodynamických parametrech mezi 

prasklými a neprasklými aneuryzmaty. Zhou 

et al provedli metaanalýzu 22 studií čítající 

1 257 jedinců a zjistili, že právě nízké WSS 

(0– 1,5 Pa) ve vaku aneuryzmatu je charakte-

ristické pro prasklá aneuryzmata [30]. Před-

pokládá se, že WSS o velikosti přibližně 2,0 Pa 

(N/ m2) je z hlediska zachování cévní stěny 

stěny nejvhodnější. WSS nižší než 1,5 Pa vede 

k apoptóze endoteliálních buněk [31]. Napří-

klad Takao et al zjistili, že minimální hodnota 

WSS u prasklých aneuryzmat byla poloviční 

v porovnání s neprasklými aneuryz maty. 

Nízké WSS tak může být indikátorem zvýše-

ného rizika ruptury intrakraniálního aneu-

ryzmatu. Dále několik autorů prokázalo, že 

u prasklých aneuryzmat je oblast nízkého 

WSS v porovnání s neprasklými aneuryz-

maty větší [32– 34]. Na druhou stranu Cebral 

et al porovnali výsledky CFD u 210 aneuryz-

mat a zjištění v jejich studii ukázala, že prasklá 

aneuryzmata mají koncentrovaný proud krve 

a vyšší WSS s vyšší maximální hladinou WSS.

Nemalé množství studií provedlo hod-

nocení hemodynamiky u prasklých mozko-

vých výdutí, u kterých bylo identifi kováno 

místo ruptury [35– 37]. V převážné většině 

se jednalo o chirurgické série, kdy neuro-

chirurg identifi koval místo ruptury periope-

račně (obr. 2A). Existují také výjimečné ka-

zuistiky endovaskulární, kdy dojde k ruptuře 

periprocedurálně přímo na angiolince [38]. 

Po vytvoření 3D sítě jsou následně kalkulo-

vány hemodynamické parametry v aneu-

ryzmatu se zaměřením na místo ruptury 

(obr. 2B). Toto je často charakterizováno spe-

cifi ckými hodnotami hemodynamických pa-

rametrů. Dle několika studií je oblast prask-

nutí v místě přímého trysku krve směrem 

proti stěně aneuryzmatu [36,38,39] (obr. 2C). 

Taková situace byla popsána též u aneu-

ryzmatu terminální bazilární tepny něko-

lik hodin před jeho prasknutím [40]. Pokud 

se týká WSS a místa ruptury, výsledky jsou 

zatím rozličné. Zatímco někteří autoři uka-

zují, že místo ruptury je v oblasti s nízkým 
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Obr. 2. Matematický model hemodynamických parametrů u pacienta s prasklým aneuryzmatem na bifurkaci střední mozkové tepny 
(M12) vpravo řešeným klipem s identifi kací místa ruptury perioperačně. WSS – smykové napětí; PWSS – smykové napěti v systole

A – Aneuryzma M12 vpravo po naložení dvou zahnutých klipů Aesculap se zobrazeným místem ruptury.

B – Výsledná 3D síť, která sloužila jako morfologický základ intrakraniálních tepen a aneuryzmatu ke kalkuaci hemodynamických parametrů.

C – Rychlostní křivky zobrazují dominantní směr toku a jeho charakter. Místo ruptury zde koreluje s vtokovým tryskem krve z segmentu M1 

arteria cerebri media.

D – Mapa WSS. Místo ruptury opět koreluje s oblastí zvýšeného WSS.

Fig 2. Computational fl uid dynamics in a patient with a ruptured right middle cerebral artery bifurcation (M12) aneurysm treated with 
a clip and a perioperatively identifi ed site of rupture. WSS – wall shear stress; PWSS – peak WSS

A – Right M12 aneurysm after applying two curved Aesculap clips with a perioperatively identifi ed site of rupture.

B – The 3D mesh of the intracranial blood vessels and the aneurysm used for calculating hemodynamic parameters.

C – Velocity curves showing the dominant direction of fl ow and its characteristics. The site of rupture is correlated with a jet fl ow from the 

M1 segment of the middle cerebral artery.

D – The map of the WSS. The site of rupture is correlated with an area of WSS. 

A

C

B

D
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popsat v rámci vyšetření pa cienta na MR, čili 

modalitě často užívané vzhledem k absenci 

radiační zátěže k longitudinálnímu sledování 

neprasklých aneuryzmat [48]. Můžeme oče-

kávat, že další technologický vývoj nabídne 

zhodnocení hemodynamických parametrů 

v rámci standardního algoritmu MR vyšet-

ření. V takovém případě můžeme kvantifi -

kovat riziko jak v rámci vstupního vyšetření, 

tak i jeho vývoj v čase při opakovaných MR 

vyšetřeních.

Závěr
Matematické modelování se v problema-

tice intrakraniálních aneuryzmat v posled-

ních letech rozvíjí. Rozšiřuje naše poznání tý-

kající se patofyziologie jejich vzniku, vývoje 

a ruptury. I přes zřejmé limitace této metody 

se ukazují ně kte ré rozdíly v hemodynamice, 

např. mezi prasklými a neprasklými aneuryz-

maty. Recentní studie pak propojují bio logii 

cévní stěny s hemodynamickými parame-

try, což může vývoj významně posunout. 

Další posun lze též očekávat od technolo-

gického pokroku, který může průběh mate-

matického modelování zrychlit a zjednodu-

šit. V blízké budoucnosti tak nejspíše zjistíme, 

zda tato metodika dosáhne reálného využití 

v klinické praxi či nikoli.
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Matematické modelování 
hemodynamiky z pohledu 
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