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Differential diagnosis of glioblastoma and
solitary brain metastasis — the success of artificial
intelligence models created with radiomics

data obtained by automatic segmentation

from conventional MRI sequences

Diferencialni diagnostika glioblastomu a solitarnich metastaz
mozku — Uspech modelt umelé inteligence vytvorenych na zakladé

radiomickych dat ziskanych automatickou
segmentaci z konvencnich MR sekvenci

Abstract

Aim: Our study aimed to distinguish glioblastoma (GBM) from solitary brain metastasis with
machine models developed with radiomics data obtained by artificial intelligence-based
automatic tumour segmentation over conventional MRI of the patients. Methods: Our study was
conducted as single-centre and retrospective. Thirty-five GBM and 25 solitary brain metastasis
patients who had pre-operative contrast-enhanced brain MRI were included in the study.
T1-weighted, postcontrast T1-weighted, T2-weighted and fluid attenuated inversion recovery
(FLAIR) T2-weighted images of the patients were uploaded to the program named BraTumlA.
With the program, the patient’s lesions were divided into four different segments by artificial
intelligence as necrosis, non-enhancing solid area, enhancing solid area and peritumorous oedema.
856 features were extracted from T1 post-contrast and T2 FLAIR images. A nested approach was
used for feature selection, model optimization and validation. Artificial neural networks, support
vector machine, random forest and naive bayes were modelled. Accuracy, sensitivity, specificity
and area under the curve (AUC) parameters were used to evaluate the model performance. Results:
There was no difference between GBM and metastasis groups in terms of age and gender. The
most successful results were obtained in the neural network algorithm; 0.970 AUC was found.
Other support vector machine, naive bayes, logistic regression and random forest algorithms also
found 0.959, 0.955, 0.955, 0.917 AUC values, respectively. Conclusion: In the differential diagnosis
of GBM and solitary brain metastasis, radiomics-based artificial intelligence models obtained by
automatic segmentation can distinguish objectively and with high accuracy by keeping device
and person dependency at the lowest level with only conventional sequences.

Key words
radiomics — machine learning — glioblastoma — metastatic brain tumour — texture analysis —
automatic segmentation

Klicova slova
radiomika — strojové ucenf — glioblastoma — metastazujici nddor na mozku — analyza textury —
automatickad segmentace

The Editorial Board declares that the manu-
script met the ICMJE “uniform requirements”
for biomedical papers.

Redakeni rada potvrzuje, ze rukopis prace splinil
ICMJE kritéria pro publikace zasilané do biome-
dicinskych ¢asopist.

E. Demirel’, C. O. Gokaslan',
O. Dilek?, C. Ozdemir?,
M. G. Boyaci4, S. Korkmaz*

' Department of Radiology, Afyonka-
rahisar Health Sciences University,
Afyonkarahisar, Turkey

?Department of Radiology, University
of Health Sciences, Adana Teaching
and Research Hospital, Adana, Turkey

*Department of Pathology, Afyonka-
rahisar Health Sciences University,
Afyonkarahisar, Turkey

*Department of Neurosurgery, Afyon-
karahisar Health Sciences University,
Afyonkarahisar, Turkey

X

Okan Dilek, MD

Department of Radiology
University of Health Sciences
Adana Teaching and Research
Hospital

Dr. Mithat Ozsan Bulvari Kisla Mah.
4522 Sok. No: 1 Yuregir

Adana, Turkey

e-mail: dr.okandilek@gmail.com

Accepted for review: 24. 5. 2021
Accepted for print: 8. 11. 2021

Cesk Slov Neurol N 2021; 84/117(6): 541-546

541




DIFFERENTIAL DIAGNOSIS OF GLIOBLASTOMA AND SOLITARY BRAIN METASTASIS

Souhrn

Cil: Cilem nasi studie bylo odlisit glioblastom (GBM) od solitdrni metastdzy mozku za pomoci strojovych modeld vyvinutych na zakladé radiomickych
dat ziskanych automatickou segmentaci nddoru z konvencich MR sken( pacientd pomoci umélé inteligence. Metody: Nase studie byla provadéna
na jednom pracovisti a byla retrospektivni. Do studie bylo zafazeno 35 pacientd s GBM a 25 pacientl se solitarni metastazou na mozku, u nichz
byla pred operaci provedena MR mozku s kontrastni latkou. Do programu BraTumlA byly nahrany T1 vazené obrazy, T1 véZzené obrazy po podani
kontrastni latky, T2 vdzené obrazy a T2 vazené obrazy s vyuzitim sekvence fluid attenuated inversion recovery (FLAIR). V programu byly léze pacienta
pomoci umélé inteligence rozdéleny do Ctyf rliznych segmentU: nekréza, nesytici se solidni oblast, sytici se solidni oblast a peritumorézni edém. Z T1
obraz{ po podani kontrastnf latky a T2 FLAIR obraz( bylo extrahovéno 856 znakd. Pro vybér znakd, optimalizaci modelu a validaci byl pouzit vnoreny
(nested) pristup. Byly modelovany umélé neuronové sité, podpdrny vektorovy stroj, ndhodny les a naivni bayesovsky klasifikator. Funkce modelu byla
hodnocena pomoci presnosti, senzitivity, specificity a plochy pod kfivkou (area under the curve; AUC). Vysledky: Mezi skupinami s GBM a s metastazou
nebyly rozdily ve véku a pohlavi. Nejuspésnéjsi vysledky byly ziskdany pomoci algoritmu neuronové sité — byla ziskana hodnota AUC 0,970. U algoritm{
za pouziti podpUlrného vektorové stroje, naivniho bayesovského klasifikdtoru, logistické regrese ¢i ndhodného lesu byly ziskdny hodnoty AUC 0,959,
0,955, 0,955, respektive 0,917. Zdveér: V diferencidlni diagnostice GBM a solitdrnich metastdz mozku mohou modely umélé inteligence zalozené na
radiomickych datech pomoci automatické segmentace objektivné a s vysokou presnosti odliSovat tak, Zze zavislost na prostfedku a osobé udrzuji na
nejnizsf Urovni za pouZiti prostych konvencnich sekvenci.

Introduction

Metastases and glioblastomas (GBM) are
the most common malignant lesions in the
brain in adulthood [1]. In conventional brain
MRI, GBM and metastases have a similar im-
aging pattern [2]. Since these two lesions’
treatment processes are completely differ-
ent from each other, it is essential to differ-
entiate these two lesions by non-invasive
methods. Currently, the gold standard for
diagnosing brain tumours is based on his-
topathology [3] However, brain tumour bio-
psy-related complications occur in about 6%
of biopsy cases [4].

MRI techniques have demonstrated ad-
vanced innovations in recent years. Studies
with innovative techniques such as MR per-
fusion, MR spectroscopy (MRS) and diffu-
sion tensor iImaging (DTI) are increasing day

Pathogically confirmed glioblastoma
or solitary metastasis (N = 125)

multifocal lesion (N = 30)

inadequate image quality
and artifacts (N = 29)

inadequate pathology report (N = 6)

Eligible patients (N = 60)

Fig. 1. Flow chart of patient selection.
N - number

Obr. 1. Vyvojovy diagram vybéru
pacienta.

N — pocet

by day in order to distinguish these two le-
sions from each other and very successful
results have been obtained [5-8]. However,
prolonged acquisition times, long post-pro-
cessing processes, the lack of active modal-
ities in every available device and the ability
to be added to devices only with very high
fees make the applicability of these modal-
ities very difficult to be used in every case.

Radiomics can be defined as a system
that extracts high-throughout quantitative
features from radiographic images and pro-
vides quantitative data far beyond what the
eye can see [9]. With radiomics, it is possible
to extract more quantitative features than
can be distinguished from conventional rou-
tine sequences.

In our study, we aimed to distinguish be-
tween GBM and solitary brain metasta-
sis with machine models developed on
radiomics data obtained by artificial intelli-
gence-based automatic tumour segmenta-
tion using conventional MRI of the patients.

Material and methods

Patient selection

Thirty-five GBM and 25 solitary brain metasta-
sis patients (from January 2011 to June 2020)
from Afyonkarahisar Health Sciences Univer-
sity Centre were included. Inclusion criteria
were as follows: patients with pre-operative
imaging; patients with complete conventional
sequences (T1-weighted images [T1WI], T2-
weighted images [T2WI], T2 fluid attenuated
inversion recovery [FLAIR], postcontrast T1WI),
patients with clearly defined diagnoses of
GBM and brain metastasis in the pathology
report. The exclusion criteria were as follows:
patients with multiple lesions, MRI images
with obvious artifacts or inadequate imaging

quality; patients with a history of intracranial
disease (such as brain trauma, intracranial in-
fection, other brain tumours).

One hundred and twenty-five patients
who met the inclusion criteria were included
in the study. Thirty of them were excluded
because of multiple lesions, 6 patients due
to inappropriate pathology reports and
29 of them due to artifacts and inadequate
imaging quality (Fig. 1).

Magnetic resonance imaging

All patients underwent unenhanced brain
MRI examination on a 1.5 Tesla Philips Intera
(Philips Medical Systems; Amsterdam, Neth-
erlands) and a 1.5 Tesla Siemens Aera (Sie-
mens, Erlangen, Germany) scanner. T1 axial
(field-of view [FOV]: 200 mm; matrix: 574 X
574: thickness: 2 mm; echo time [TE]: 4;
5 ms; time to repeat [TR]: 25 ms); T2 FLAIR
(FOV: 200 mm; matrix: 574 x 574 thick-
ness: 2mm; TE: 105 ms; TR: 9,000 ms; inver-
sion time: 2,500 ms), T2 (FOV: 200 mm; ma-
trix: 574 x 574; thickness: 2mm; TE: 140 ms;
TR: 4,200) T1 post contrast images were
evaluated. An overview of the radiomics
workflow is shown in Fig. 2.

Segmentation

For fully automated segmentation, the
open-source program Brain Tumor Image
Analysis (BraTumlA) v.2.0.5 (Neurolmaging
Tools and Resources Collaboratory) was used
(Fig. 3) [10]. The program requires the user to
upload conventional MRI sequences (TT1WI,
post-contrast TIWI, T2WI and FLAIR) into the
program interface. The system uses four dif-
ferent MRI sequences to identify the tumour
and its subregions. BraTumlIA not only sepa-
rates the lesion from the intact brain tissue
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WORKFLOW
Automatic Radiomics feature Feature Machine
segmentation extraction selection learning
artificial neural network
shape standardization support vector machine
s el first order and randomization of logistic regression MODEL
o GLCM feature naive bayes COMPARISON
normalization ) ) :
bias correction GLRLM collinearity analysis random forest
GLSZM feature selection with
NGTDM nested cross validation model development with
nested cross validation

Fig. 2. Technical study workflow.

GLCM — gray level co-occurrence matrix; GLRLM — gray level run length matrix; GLSZM — gray level size zone matrix; NGTDM — neighbour-
hood gray-tone difference matrix

Obr. 2. Pracovni postup technické studie.

GLCM - Urover $edé matice soucasného vyskytu; GLRLM — Uroven Sedé matice délky trvani; GLSZM — Uroven Sedé matice velikosti zony;
NGTDM — matice rozdilu $edé v sousedstvi

T 1+CWI but also performs segmentation of tumour
tissue into four sub-regions (oedema, necro-
sis, non-enhancing solid area and enhanc-
ing solid area). Initially, images pass through
a pre-processing line that includes aligning
the images, extracting brain tissue from the
images and extracting noise from the signal.
Then, the feature extraction process, which
includes the identification of different prop-
erties for each voxel, is applied to pre-pro-
cessed images to distinguish between path-
ological and healthy tissue. Classification is
done using a Support Vector Machine classi-
fier, which determines, based on each voxel's
characteristics, the allocation of it to one of
the subdivisions evaluated through a proba-

Fig. 3. BraTumlA user interface. BraTumIA
divides the mass into 4 segments: red
colour — necrosis; blue colour — oedema;
pink colour — non-enhanced solid area;
yellow colour — enhanced solid area.
FLAIR — fluid-attenuated inversion recovery;
T1 C+ — enhanced T1; WI — weighted images
Obr. 3. Uzivatelské rozhrani programu
BraTumlIA. Program BraTumIA masu roz-
déluje do 4 segment(i: ¢ervend — nekréza;
modra — edém; rlzova - solidni oblast bez
syceni po kontrastu; Zlutd - solidni oblast
sytici se po kontrastu.

FLAIR — inverzni zobrazeni s potla¢enim sig-
nalu tekutiny; T1 C+-T1 s kontrastem;

WI - vazené obrazy
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Tab. 1. Results from machine learning - radiomics.

support vector machine

Model AUC ACC F1 Precision Recall Specificity
neural network 0970 0917 0917 0918 0917 0918
SVM 0.959 0.883 0.884 0.889 0.883 0.894
NB 0.955 0.850 0.851 0.856 0.850 0.859
LR 0955 0.833 0.832 0.833 0.833 0.812
RF 0917 0.867 0.866 0.867 0.867 0.848

AUC - area under the curve; ACC — accuracy r; F — F measure; LR - logistic regression; NB — naive bayes; RF — random forest; SPE — pecificity; SYM —

100
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£
e
a
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Fig. 4. Receiver operating characteristic curve of the optimal classifier.

SVM - support vector machine
Obr. 5. ROC kfivka optimalniho klasifikatoru.
SVM — podpurny vektorovy stroj

bility distribution. Finally, using a Conditional
Random Fields method on the created tag
map, the spatial arrangement is tried to en-
sure the spatial consistency of voxels classi-
fied according to neighbouring voxels. This
whole pipeline of the program has been
described before [11,12]. Subsequently,
minor segmentation flaws were corrected
manually with the 3D slicer v4.11 program.

Extraction of radiomics features
The volume-of-interest was then normal-
ized by the package “Normalizelmage-

Filter”. Before feature extraction by the
3DSlicer version 4.11 radiomic package (ver-
sion 2.1.0), gray-level discretization and
voxel resampling were performed. All fea-
tures were calculated with a fixed bin width
of 25, and resampling to a voxel size of
0.6 X 0.6 X 5.0 mm? was applied. Feature ex-
traction procedure was applied to post-con-
trast TIWI and T2WI FLAIR images. In total,
856 attributes were created. First-order tex-
ture features, “gray level co-occurence ma-
trix” (GLCM), “gray level run length matrix”
(GLRLM) and “neighbourhood gray tone

difference matrix” (NGTDM), “gray level size
zone matrix” (GLSZM), 2-3D shape proper-
ties were extracted [13-15].

Dimension reduction

and machine learning

The open-source Python Sci-Kit Learn library
and Waikato Environment for Knowledge
Analysis toolkit version 3.8.4 (The University
of Waikato, Hamilton, New Zealand) were
used [16,17]. It is crucial to remove data that
do not contribute significantly to the classifi-
cation’s accuracy from the entire feature set
and create a model with contributing data.
For this reason, the attributes went through
certain preliminary processes before ma-
chine learning was introduced. First, rand-
omization and normalization of the features
were provided. Collinearity analysis was per-
formed using the Pearson’s correlation co-
efficient () test. The r threshold was 0.7. The
features with high collinearity were excluded
from the analysis. We used a nested cross-
validation method (5-fold inner and 5-fold
outer cross-validation loops) for feature se-
lection along with model optimization. For
feature selection, a wrapper attribute evalua-
tor and an incremental wrapper-based sub-
set selection method were used [18-20]. The
wrapper attribute evaluator evaluates attrib-
ute sets of interest by user-defined learning
schemes, which were support vector ma-
chine (SVM) in our study. The attributes that
underwent two or more inner loops were in-
cluded in the outer loop. Then, the features
that underwent two or more outer cross-
validations were chosen for final model
development.

In machine learning, artificial neural net-
works (ANN), SVM, logistic regression (LR)
random forest (RF) and naive bayes (NB)
were modelled. Due to the relatively small
size of our data set, the nested cross-valida-
tion method was preferred. Nested cross-
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validation was performed via a 5-fold outer
and inner loop. The performance of classi-
fiers was mainly evaluated and compared
with the area under the curve (AUCQ).

Statistical analysis

Descriptive statistics; mean + standard devia-
tion for continuous variables if it conforms to
the normal distribution; if it did not comply
with the normal distribution, it was expressed
as median values. The Mann-Whitney U test
was used to compare continuous variables
that did not show normal distribution with
two-level variables. Relationships between
categorical variables were examined by Chi-
square analysis / Fisher's exact test. Finally,
the relationships between continuous varia-
bles were evaluated using Pearson correlation
analysis. The significance level was accepted
as P < 0.05 in all analyzes. The open-source R
program was used for these processes.

Results

A total of 60 patients were included in the
study, 38 males and 22 females, aged be-
tween 28 and 94 years. Thirty-five patients
were diagnosed with GBM and 24 had me-
tastasis. Primary diagnoses of metastatic
brain tumours were as follows; lung carci-
noma (N = 12), colorectal carcinoma (N = 5),
breast cancer (N = 3), renal cell carcinoma
(N =2), malignant melanoma (N = 1) and can-
cer of unknown primary (N = 1). There were
no significant differences in sex and age be-
tween the two groups (P = 0.651, P = 0.910,
respectively).

As a result of the dimension reduction
processes, 280 features were eliminated due
to the collinearity analysis. Then, as a result
of wrapper subset-based nested cross-val-
idation processes, machine models were
fed with four attributes containing the most
information.

When the successes in machine learning
were ranked according to the AUC value, the
highest success was found in ANN. It was
able to differentiate GBM/metastasis with
a 0.970 AUC value, 92% sensitivity and 92%
specificity. Subsequently, the SVM, NB, LR, RF
models had AUC success, respectively. De-
tailed classification performance parame-
ters are available in Tab. 1, and the models’
receiver operating characteristic curves are
shown in Fig. 4.

Discussion
In our study, we aimed to distinguish GBM
from solitary brain metastasis with machine

models developed with radiomics data ob-
tained by artificial intelligence-based auto-
matic tumour segmentation through only
conventional MRl images of the patients. In
our working system, we aimed to work as
objectively as possible by minimizing indi-
vidual dependency, including the segmen-
tation process. We have achieved very high
success in distinguishing GBM from solitary
brain metastasis. However, since our study
group is relatively small, our study can be
considered as a pilot study and more robust
models should be developed with larger pa-
tient series.

Differential diagnosis of GBM and metas-
tasis, which are the most common malig-
nant tumours of the brain, is quite challeng-
ing, especially in the presence of a solitary
lesion, if there is no proven malignancy. Con-
sidering studies in the literature, advanced
MRI' methods such as MRS, MR perfusion and
DTG can successfully differentiate GBM from
solitary metastases [5-8]. However, it is chal-
lenging to use all advanced MRI modalities
in the first examination for tumour imaging
due to human and device-based limitations.

Radiomics refers to a process that extracts
high-throughout quantitative and objec-
tive features from radiographic images and
creates image features prediction models for
genomic patterns and clinical outcomes [9].
While obtaining these features, segmen-
tation of the lesion or organ constitutes
a vital problem that creates user depend-
ency. Many radiomics-based studies in cur-
rent literature partially lose their objectivity
due to segmentation with manual segmen-
tation [21]. Although researchers segment
with more than one person and exclude dis-
cordant data between evaluators, this situa-
tion is quite time-consuming. Therefore, the
number of studies involving automatic seg-
mentation is increasing day by day in studies
based on radiomics [22]. This situation is
quite challenging for researchers due to the
need for advanced engineering knowledge
and the lack of user-friendly open-source
third-party software. In our study, we man-
aged to partially overcome this problem
with the completely free and user-friendly
BraTumlA program.

Since our inclusion/exclusion criteria were
quite limiting, we had difficulty in expand-
ing our sample group. In particular, patho-
logically proven solitary metastasis was our
main limitation. Although there are pub-
lic datasets for GBM, there are no such data
for solitary brain metastases. We preferred

a nested cross-validation approach to par-
tially overcome the overfitting and selec-
tion bias problems that our working group’s
small size may cause.

There are few radiomics-based studies
for the differential diagnosis of GBM and
metastasis. Bae et al [23] extracted radiom-
ics data on the enhancing area and peritu-
morous oedema area that they segmented
semiautomatically in sample groups that in-
cluded 166 training and 82 verification co-
horts. They succeeded in making this dis-
tinction in the deep neural network with
a value of 0.956 AUC in the artificial intelli-
gence models they developed. Chen et
al [24] succeeded in making this discrimina-
tion with an AUC value of 0.830 in their arti-
ficial intelligence models’ logistic regression
model. They extracted radiomics data from
the enhancing tumour area in the manual
segment in 134 disease sample groups. Or-
tiz-Ramon et al [25] obtained radiomics
data by manually segmenting postcontrast
TIWI from a sample group of 50 GBM and
50 metastases. As in our study, they used
the nested cross-validation method. Again,
in the artificial intelligence models they de-
veloped, they found a value of 0.896 AUC
in support vector machines. Qian et al [26]
found a value of 0.900 AUC in support vec-
tor machines in artificial intelligence models
that they developed by extracting radiomics
data from the manually segmented enhanc-
ing tumour area in the sample group con-
sisting of 242 GBM and 170 metastases.

Artzi et al [27] performed the most com-
prehensive study on this subject with a sam-
ple group of 212 GBM and 227 metastasis
patients. The patients’ lesions were semi-au-
tomatically segmented on postcontrast T1WI,
which is the superiority of this study to pre-
vious studies in the literature. However, there is
partial user dependency in the semiautomatic
segmentation process they used. In the artifi-
cial intelligence models, they found a value of
0940 AUC in support vector machines.

When evaluated together with previous
studies, we achieved very high success in
almost all of the machine models we de-
veloped. In the ANN algorithm, we distin-
guished GBM/metastasis with 0.970 AUC
value, 92% sensitivity and 92% specificity.
The most significant advantage of our work
is that it is carried out using open-source
programs. It is the only study in the litera-
ture to segment the mass as necrosis, non-
enhancing solid area, enhancing solid area
and peritumourous oedema area with fully
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automated segmentation and extracting ra-
diomics data separately in these four areas.
In addition, it is another advantage that it
obtains radiomics data over both post-con-
trast TIWIand FLAIR.

The tests used in this differential diagnosis
must have similar predictive values and con-
fidence intervals in diseases with relatively
common and catastrophic consequences in
the population, such as GBM and metasta-
sis. Models created with radiomics data are
still far behind this generalisability. When
it comes to MRI, many parameters such as
Tesla differences, vendor differences and dif-
ferences in the obtained sequence parame-
ters change the image'’s quantitative proper-
ties before the radiomics features extraction
process. Later, it contributes to this differ-
ence in many stages such as pre-process-
ing applications, radiomics feature extrac-
tion applications, feature selection methods,
machine learning algorithms and hyperpa-
rameter tuning processes. Our study has fol-
lowed an approach that will try to increase
generalisability using a 1.5 T machine from
two different vendors and with as few fea-
tures as possible. For the models created
with radiomics data to gain generalisability,
a robust feeding model should be selected
and systems should be fed with the images
of the maximum number of patients from
the most different devices possible. For this
reason, our study is only a pilot study.

When the supplementary packages of the
studies were examined, it was seen that the
most frequently used features in model de-
velopment were “GLSZM nonuniformity”
and size-related parameters [24,28]. In our
study, shape-related features and GLSZM
nonuniformity were among the parameters
used in model development. If this situation
is considered in future studies, fast and ac-
curate systems can be created with much
fewer features.

There are some very important limitations
in our study. The most important of these is
that it is a single-centre retrospective and
a small sample group. Due to a small sam-
ple group, patients could not be allocated
for the external validation cohort. Although
the nested cross-validation approach was
chosen to overcome this, new studies based
on automated segmentation with larger val-
idation cohorts will yield more reliable and
generalisable results. Since there are many
different primary malignancies that cause
heterogeneity of the metastasis group, more
information can be obtained if the number

of metastasis cases is increased and divided
into subgroups.

Conclusion

As a result, our study is unique in the litera-
ture due to the application of automatic seg-
mentation process with completely free use-
ful programs and the extraction of radiomics
data from 4 different regions of the mass
through postcontrast TIWI and T2 FLAIR
images, which are the most important se-
guences in conventional tumour imaging.
With the widespread use of automatic seg-
mentation and radiomics applications over
time, robust-fed machine models with mini-
mum user dependency and high generalisa-
bility will serve as a successful assistant in the
decision-making process in radiology.
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