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Využitie umelej inteligencie pri hodnotení obrazu 
CT u pacientov s CMP – aktuálne možnosti

Use of artifi cial intelligence in CT image 

evaluation in stroke patients – current options

Súhrn 
Rýchly rozvoj umelej inteligencie patrí medzi najdôležitejšie technologické pokroky súčasného 

desaťročia a ovplyvňuje takmer všetky aspekty života, medicínu nevynímajúc. Široké uplatnenie 

umelá inteligencia zaznamenáva aj v neurorádiológii, osobitne v dia gnostike CMP. K hlavným 

účelom jej použitia v tejto sfére patrí urýchlenie vyhodnocovacieho procesu, zvýšenie dia gnostickej 

presnosti a pomoc pri voľbe liečebnej stratégie. Lekári zapojení do iniciálneho manažmentu 

pacienta s CMP by mali byť oboznámení s technickými princípmi a možnými aplikáciami nástrojov 

umelej inteligencie v neurozobrazovaní a poznať silné a slabé stránky tejto technológie. V článku 

sú v skratke predstavené metódy umelej inteligencie využívané pri spracovaní obrazových dát. 

Hlavným cieľom publikácie je prezentácia jednotlivých automatických analýz nápomocných 

v interpretácii dia gnostických informácií získaných vyšetrením CT, ktoré je pre väčšinu pracovísk 

modalitou prvej voľby v dia gnostike CMP. Patria tu kalkulácia skóre ASPECT a detekcia príznaku 

hyperdenznej cievy z natívneho vyšetrenia CT, identifi kácia uzáveru veľkej cievy a určenie skóre 

kolaterál z CTA a vytvorenie perfúznych máp z perfúzneho vyšetrenia CT. 

Abstract
Artifi cial intelligence and its rapid development represent one of the most important technological 

advances of the current decade. It aff ects almost all aspects of life, including medicine. Artifi cial 

intelligence is widely applied in neuroradiology, particularly in stroke dia gnosis. The primary 

purpose of its application in this area is to accelerate the interpretation process, increase dia-

gnostic accuracy, and help to select the treatment strategy. Clinicians involved in the initial 

management of a stroke patient should be familiar with the technical principles and possible use 

of artifi cial intelligence in neuroimaging, and they should know the strengths and weaknesses of 

the technology. This article briefl y presents methods of artifi cial intelligence used in visual data 

processing. The main goal of the publication is to present particular automated analyses used 

in the interpretation of dia gnostic information taken from CT images. CT is the primary choice in 

stroke dia gnostics for most medical departments. The presented analyses are a calculation of the 

ASPECT score and detection of a hyperdense artery sign from non-contrast CT scans, identifi cation 

of large vessel occlusion and collateral score evaluation from CTA, and creation of perfusion maps 

from CT perfusion.
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Úvod
Cievna mozgová príhoda je celosvetovo 

druhá najčastejšia príčina mortality a vysoká 

je aj úroveň ňou podmienenej chronickej in-

validity [1]. V Európe postihuje ročne 1,1 mi-

lióna ľudí a ekonomické náklady spojené so 

starostlivosťou o nich boli vyčíslené na 45 bi-

liónov eur ročne [2]. Zobrazovacie modality 

sú kruciálnou súčasťou dia gnostického pro-

cesu CMP, ich úloha spočíva v detekcii, cha-

rakteristike a v stanovení prognózy akútnej 

ischemickej aj hemoragickej CMP [1]. Na väč-

šine pracovísk sa ako metóda prvej voľby 

používa vyšetrenie CT, najmä pre svoju rých-

losť a širokú dostupnosť [3]. Natívne vyšet-

renie CT je schopné odlíšiť podtypy CMP 

a lézie imitujúce CMP. V prípade ischemic-

kej CMP je štandardom aj CTA karotického 

a vertebro-bazilárneho povodia. Celkovo 

24–46 % ischemických CMP je spôsobených 

uzáverom veľkej tepny [4], ktorý sa predomi-

nantne vyskytuje v prednej cirkulácii. Ran-

domizované kontrolované štúdie dokázali 

bezpečnosť a efektívnosť včasnej mechanic-

kej trombektómie [5]. Za revolučné sú po-

važované najmä štúdie DAWN a DEFUSE-3, 

na základe ktorých boli v roku 2018 aktuali-
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zované odporúčania American Heart Asso-

ciation/ American Stroke Association. Podľa 

nich bolo časové okno na realizáciu trom-

bektómie u vybraných pacientov predĺžené 

zo šiestich až na 24 h [4]. Z revaskularizačnej 

endovaskulárnej liečby (EVL) profi tujú pa-

cienti so stredne závažným až ťažkým kli-

nickým defi citom, ktorí majú pri zobrazo-

vacom vyšetrení detegované limitované 

jadro ischémie a rozsiahlu penumbru [6]. 

V rozhodovacom procese je teda časové 

okno nahrádzané tkanivovým oknom [4]. 

Na hodnotenie jadra a penumbry sú reali-

zované pokročilé neurozobrazovacie me-

tódy – perfúzne CT alebo vyšetrenie MR 

(fl uid attenuated inversion recovery [FLAIR], 

difúziou vážené obrazy [diffusion weigh-

ted imaging; DWI], perfúzne vážené ob-

razy [perfusion weighted imaging; PWI)] [7]. 

S rastúcou úlohou zobrazovacích vyšetrení 

v dia gnostike CMP súvisia pokroky v spraco-

vaní obrazu a rozvoj algoritmov umelej in-

teligencie (artificial intelligence; AI), ktoré 

sú schopné automaticky extrahovať dia-

gnostické informácie. Algoritmy AI pred-

stavujú dôležitý nástroj podpory rádioló-

gov pri urýchlení dia gnostiky CMP a pri 

stanovení správneho rozhodnutia o zva-

žovanej intervencii v kratšom čase [4]. Čím 

rýchlejšie je stanovená dia gnóza a zahájená 

vhodná liečba, tým lepší je klinický efekt pre 

pacienta [8].

Umelá inteligencia
Umelá inteligencia je defi novaná ako schop-

nosť strojov napodobňovať kognitívne funk-

cie ľudí – učenie a riešenie problémov. AI 

možno chápať ako súbor programov a ná-

strojov, ktoré činia softvér „múdrym“ do 

takej miery, že si nezávislý pozorovateľ myslí, 

že výstup bol produkovaný človekom [9]. 

Odvetvie AI je pokladané za najrevolučnej-

šiu oblasť v zdravotníckom priemysle za po-

slednú dekádu a najväčší podiel na tomto 

vývoji má dia gnostické zobrazovanie [10]. 

Faktom je, že počet vyšetrení v rádiologickej 

praxi v posledných rokoch dramaticky vzrás-

tol a pracovné zaťaženie v tomto segmente 

bude pravdepodobne narastať aj v blízkej 

budúcnosti [11]. S tým úzko súvisí aj rozmach 

metód AI. V septembri 2023 bolo dokumen-

tovaných 237 medicínskych pomôcok vyu-

žívajúcich AI v rádiológii schválených Food 

and Drug Administration (FDA) [12]. V ana-

lýze obrazových dát vykazujú prelomový 

výkon najmä strojové učenie a hlboké uče-

nie [10], poskytujúce efektívny spôsob rých-

lej zobrazovacej analýzy [1]. Neurorádiológia 

je jednou z popredných subšpecializácií v rá-

diológii z hľadiska počtu a rozmanitosti apli-

kácií AI [13]. Zvlášť medicína CMP je vhodná 

pre ich aplikovanie kvôli obrovskému množ-

stvu dát a multidisciplinárnemu prístupu 

k liečbe. Zobrazenie mozgu, ktoré je kľúčo-

vým faktorom v manažmente CMP a vytvára 

základ pre mnohé klinické rozhodnutia, je 

atraktívnym predmetom techník AI [14], vrá-

tane nástrojov na triáž, kvantifi káciu, sledo-

vanie a predikciu [1]. Chandrabhatla et al. 

v publikácii z mája 2023 uvádzajú až 20 FDA 

schválených technológií využívaných v zo-

brazovacej dia gnostike CMP [15]. 

Strojové učenie
Strojové učenie je podmnožina AI využíva-

júca štatistické prístupy umožňujúce strojom 

optimalizovať predikciu výsledku po tom, čo 

sú vystavené údajom a trénované na rozpo-

znávanie vzorov [1]. Ide o oblasť, kde sa počí-

tače učia z akumulácie dát bez toho, aby boli 

špecifi cky naprogramované [16]. Algoritmy 

strojového učenia (napr. lineárna regresia, lo-

gistická regresia, zhlukovanie, metóda pod-

porných vektorov, náhodný les) sa s rastú-

cim vystavením údajom rozvíjajú, nepracujú 

výlučne na základe pravidiel, ale skúsenos-

ťami sa zlepšujú, odpovedať na konkrétne 

otázky sa učia pomocou vyhodnocovania 

veľkého množstva vstupných údajov [9,17]. 

Pri strojovom učení sa premenné používané 

ako vstupné údaje všeobecne označujú ako 

vlastnosti a spravidla sú určené vedeckým 

tímom. Keďže výkon strojov je premenlivý 

v závislosti od zadaných vlastností, veľmi dô-

ležitá je selekcia a extrakcia vhodných vlast-

ností zo súboru dát. V rádiológii, pri obra-

zových dátach, sa na strojové učenie môžu 

využiť rôzne vlastnosti obrazu ako veľkosť, 

lokalizácia, tvar a denzita či signálová inten-

zita lézie. Stroje sú schopné rozlíšiť a použiť 

aj ďalšie vlastnosti obrazu, ako sú informá-

cie o textúre – napr. gradient signálovej in-

tenzity a zošikmenie, ktoré nie sú ľudským 

okom rozpoznateľné. Strojové učenie sa delí 

na učenie pod dohľadom a učenie bez do-

hľadu [17]. Tieto metódy je možné rozlíšiť 

na základe toho, či používajú ľudskú spätnú 

väzbu [14]. Pre obe je spoločné, že sú ria-

dené dátami a samotný proces rozhodova-

nia je uskutočnený s minimálnymi zásahmi 

človeka [18]. Učenie pod dohľadom (s učite-

ľom) na vykonanie stanovenej úlohy využíva 

tréningový súbor údajov, ktoré sú vopred 

označené človekom [14]. Keď je program vy-

stavený vzorovým dátam rovnakého typu, 

využije charakteristiky tréningového sú-

boru na predpovedanie konkrétneho vý-

sledku alebo cieľa [16]. Proces označovania 

je pre povereného človeka prácny a časovo 

náročný [14]. Príkladom je súbor vyšetrení 

CT mozgu, ktoré rádiológ klasifi kuje do rôz-

nych skupín (napríklad intrakraniálna hemo-

rágia prítomná/neprítomná) [17]. Na rozdiel 

od toho učenie bez dohľadu (bez učiteľa) 

nepoužíva človekom defi nované odpovede, 

ale snaží sa vo veľkých súboroch dát samo-

statne identifi kovať prirodzene sa vyskytu-

júce skryté vzorce alebo zoskupenia, ktoré 

sú pre ľudí zvyčajne neviditeľné [14,16]. Patrí 

tu napríklad zhlukovanie – algoritmus, pri 

ktorom sú obrázky roztriedené do viacerých 

skupín na základe metriky podobností bez 

a priori známeho hnacieho momentu pro-

cesu separácie [14].

Hlboké učenie
Hlboké učenie je metóda strojového uče-

nia využívajúca špecifickú architektúru, 

konkrétne niektorú z foriem neuróno-

vej siete [17]. Toto odvetvie AI napodob-

ňuje ľudský mozog používaním početných 

vrstiev umelých neurónových sietí. Tie sú 

zložené z uzlov a usporiadané do vzájomne 

prepojených vstupných, skrytých a vý-

stupných vrstiev. Hlboké učenie sa ozna-

čuje ako hlboké, lebo má viacero skrytých 

vrstiev [14,16], ktoré reprezentujú interneu-

róny [17]. Tieto vrstvy zhromažďujú údaje zo 

vstupov a poskytujú výstup, ktorý sa môže 

postupne meniť, keď sa systém z dát naučí 

nové vlastnosti [9]. Na rozdiel od iných tra-

dičných metód strojového učenia vyžadu-

júcich ručnú extrakciu vlastností zo vstu-

pov, techniky hlbokého učenia sa tieto 

vlastnosti učia nezávisle priamo z dát, bez 

potreby výberu [19]. Algoritmy hlbokého 

učenia poskytujú zvlášť výnimočný výkon 

v obrazovej analýze, rovnajúci sa alebo až 

prekonávajúci ľudský výkon. Preto je rádio-

lógia považovaná za prirodzenú oblasť pre 

využitie hlbokého učenia [20] a hlboké uče-

nie je základom väčšiny nástrojov AI na in-

terpretáciu obrazu [9]. Najpopulárnejšou 

a najúspešnejšou podmnožinou hlbokého 

učenia v medicínskom zobrazovaní sú kon-

volučné neurónové siete [1], inšpirované vi-

zuálnou mozgovou kôrou cicavcov [17]. Kon-

volučné neurónové siete majú na rozdiel od 

tradičných metód strojového učenia schop-

nosť automaticky identifi kovať vzory v kom-

plexných obrazových súboroch, čím dochá-

dza ku kombinácii výberu vlastností a ich 

klasifi kácii do jedného algoritmu [1]. Skryté 

vrstvy konvolučných neurónových sietí pou-
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žívajú operácie konvolúcie a podvzorkova-

nia (priestorového zmenšenia) na rozloženie 

obrazu na vlastnosti obsahujúce najhod-

notnejšie informácie [16]. Kľúčovým úče-

lom konvolučných vrstiev je získanie rozli-

šujúcich vlastností (napr. hrany, línie, tvary) 

zo vstupnej obrazovej informácie [18]. Uzly 

konvolučných neurónových sietí sú spojené 

v geometrickej štruktúre, pričom každý uzol 

je napojený len na malú časť vstupu, čím sa 

odlišujú od bežných neurónových sietí, kde 

je každý uzol napojený na každú hodnotu zo 

vstupu [14,18]. Pri spracovaní obrazu sú uzly 

vstupnej vrstvy usporiadané tak, aby vytvo-

rili konvolúciu malej časti obrazu (jadro), toto 

jadro sa následne pohybuje po obraze a vy-

tvára výstupnú hodnotu, informácia pre-

chádza od jednoduchých po pokročilejšie 

vrstvy [14]. V závere dochádza v plne prepo-

jenej vrstve, reprezentujúcej tradičnú neuró-

novú sieť, k aplikácii uvažovania na vysokej 

úrovni a spojeniu všetkých vlastností z ob-

razu a výstupná vrstva poskytne predikcie. 

Táto štruktúra má v rámci rádiológie uplat-

nenie pri kategorizácii lézií alebo stavu zo 

zobrazovacích modalít a aj pri rozhodovaní, 

či konkrétny pixel patrí do pozadia alebo do 

cieľovej triedy [16,18].

Umelá inteligencia pri 
zobrazovaní ischemickej CMP
Techniky AI je možné aplikovať vo všetkých 

úrovniach manažmentu CMP – od predne-

mocničnej starostlivosti, vrátane transportu 

do centra EVL, cez rádiodia gnostiku, až po 

voľbu liečebnej stratégie a následnú rehabi-

litačnú starostlivosť [21]. V rámci zobrazova-

nia môže AI skvalitniť technický aspekt akvi-

zície obrazu. Prístupy strojového učenia sú 

schopné zlepšiť rýchlosť a kvalitu skenova-

nia, rekonštrukciu obrazu, redukciu artefak-

tov, ktoré vznikajú počas skenovania a rekon-

štrukcie či redukciu kovových artefaktov [22]. 

Umožňujú tiež minimalizáciu dávky žiarenia 

aj redukciu dávky kontrastnej látky pri udržaní 

optimálnej kvality obrazu [16]. Ďalším príno-

som sú algoritmy nápomocné pri interpre-

tácii obrazu. Základné zobrazovacie otázky, 

ktoré je v prípade akútnej ischemickej CMP 

nutné čo najrýchlejšie zodpovedať sú vy-

lúčenie intrakraniálnej hemorágie, rozsah 

akútnej ischémie, prítomnosť uzáveru veľkej 

cievy a rozsah tkaniva v riziku [4,23]. Každo-

denná prax však v rámci tohto procesu uka-

zuje viacero limitujúcich faktorov – hodnote-

nie a interpretácia obrazových dát sú časovo 

náročné, rádiológovia majú rôznu úroveň 

skúseností a expertízy v neurozobrazovaní 

a v prípade príjmu pacienta s CMP v komu-

nitných, periférnych nemocniciach s men-

šou mierou skúseností v dia gnostike CMP sú 

okrem menších skúseností navyše závažným 

problémom aj oklieštené ľudské zdroje [23]. 

Obmedzením kvalitatívneho hodnotenia 

CMP je tiež jeho subjektivita. Menované či-

nitele podporujú zavedenie vysokorýchlost-

ných automatických analýz, prekonávajúcich 

konvenčné metodológie a skracujúcich čas 

do liečby. Nástroje AI dokážu automaticky vy-

produkovať kvantitatívne merania ako skóre 

ASPECT (Alberta Stroke Program Early CT 

Score) z natívneho vyšetrenia CT, detegovať 

uzáver veľkej cievy či stanoviť skóre kolaterál 

na CTA a spracovať perfúzne mapy z perfúz-

neho vyšetrenia CT k posúdeniu potenciálne 

zachrániteľného mozgového tkaniva [16]. Na 

kalkuláciu ASPECT skóre je najčastejšie pou-

žívanou metóda náhodných lesov, na detek-

ciu uzáveru veľkej tepny sú najvyužívanejšie 

konvolučné neurónové siete [24]. Zvlášť od 

objavu hlbokého učenia je hodnotenie medi-

cínskeho zobrazovania pomocou AI považo-

vané za veľmi rýchlo expandujúci priemysel. 

V rámci Európskeho hospodárskeho priestoru 

je pred uvedením medicínskeho softvéru na 

trh nutné získanie certifi kačnej značky, ktorá 

preukazuje zhodu s predpismi o zdravotníc-

kych pomôckach schválenými Európskym 

parlamentom a Radou [8]. K najznámejším 

komerčným platformám používaným v dia-

gnostickom procese CMP patria e-Stroke 

Suite (Brainomix, Oxford, Anglicko) v spolu-

práci s Olea Sphere (Olea Medical Solutions, 

La Ciotat, Francúzsko), Viz.ai (Viz.ai, SanFran-

cisco, CA, USA), RapidAI (iSchema View, Men-

loPark, CA, USA) [21]. Tieto softvéry sú pre-

pojené s nemocničným systémom PACS 

(Picture Archiving and Communication Sys-

tem), do ktorého sa výsledky hodnotenia au-

tomaticky prenášajú. Dostupné sú v priebehu 

niekoľkých minút na obrazovkách pracov-

ných konzol a v mobilných aplikáciách. Ná-

stroje AI sú schopné odoslať notifi káciu poho-

tovostnému neurointervenčnému tímu, ten 

má týmto spôsobom obrazovú dokumentá-

ciu dostupnú k prezretiu prakticky kdekoľvek. 

Aj tento krok dokázateľne urýchľuje zahájenie 

terapeutického procesu [23]. V štúdii autorov 

Elijovich et al. bol časový medián od realizá-

cie CTA po odoslanie notifi kácie pomocou AI 

kratší o 19 minút ako pri bežných podmien-

kach (7 vs. 26 min; p < 0,001) [25].

Skóre ASPECT
ASPECT je kvantitatívny skórovací systém im-

plementovaný na objektívnejšie posúdenie 

včasných ischemických zmien u pacientov 

s uzáverom arteria cerebral media (ACM) na 

natívnom vyšetrení CT [26,27]. U pacientov 

v skorom časovom okne (do 6 h od začiatku 

príznakov) je skóre ASPECT na základe nie-

koľkých randomizovaných klinických štúdií 

rozhodujúcim nástrojom v selekcii pacien-

tov na EVL. Podľa platných medzinárodných 

guidelinov je trombektómia indikovaná 

u pacientov so skóre ≥ 6 [26–28]. Recentne 

boli publikované aj výsledky multicentrickej 

randomizovanej nezaslepenej klinickej štú-

die TENSION, v ktorej bol preukázaný priaz-

nivý efekt endovaskulárnej trombekótmie 

aj u pacientov s preukázaným veľkým in-

farktom (ASPECT 3–5) a s predĺženým ča-

sovým oknom (do 12 h) [29]. Napriek kon-

cepčnej jednoduchosti je detekcia skorých 

ischemických zmien a stanovenie skóre AS-

PECT v praxi výzvou, zvlášť pre menej skú-

sených a trénovaných hodnotiacich lekárov 

bez špecializácie v neurozobrazovaní. Ne-

jasné hranice medzi jednotlivými oblasťami 

zahrnutými do skórovania, diskrétne zmeny 

denzity v skorom štádiu iktu ťažko rozpo-

znateľné voľným okom, časový stres, zauja-

tosť hodnotiaceho očakávanými zisteniami 

a rozdiely v technických činiteľoch vplýva-

júcich na kvalitu obrazu (energia RTG žiare-

nia, spracovanie obrazu, rekonštrukčné al-

goritmy) patria k hlavným faktorom, ktoré 

spôsobujú nekonzistentnosť hodnotenia 

medzi rádiológmi [3,30]. Stupeň zhody bol 

viacerými štúdiami stanovený na miernu až 

strednú úroveň [26–28]. To však môže mať 

klinické dôsledky [28]. Jedným zo spôsobov 

vedúcich k redukcii tejto variability a k zvý-

šeniu spoľahlivosti interpretácie skóre AS-

PECT je použitie AI (obr. 1), najmä techník hl-

bokého učenia [3,27]. Dostupné softvérové 

programy na kalkuláciu skóre ASPECT do-

sahujú sľubné výsledky v porovnaní s ľud-

ským hodnotením. V štúdii autorov Nagel 

et al. bola porovnávaná schopnosť detek-

cie včasných ischemických zmien medzi ko-

merčným systémom e-ASPECTS Brainomix, 

založenom na strojovom učení a tromi neu-

rorádiológmi, pričom nebola zaznamenaná 

menejcennosť automatizovaného hodnote-

nia [31]. V ďalšej štúdii automatické hodno-

tenie tiež dosiahlo podobné výsledky ako 

konsenzuálne čítanie dvoch skúsených neu-

rorádiológov [27]. Maegerlein et al. vo svo-

jej publikácii dokonca prezentujú väčšiu, 

takmer úplnú zhodu (k = 0,90) automatic-

kého softvéru s vopred defi novaným refe-

renčným štandardom v porovnaní s dvomi 

osvedčenými neurorádiológmi [28]. Nao-
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pak, Li et al. na vzorke 61 pacientov dete-

govali nižšiu úspešnosť automatizovaného 

softvéru v porovnaní s dvoma skúsenými 

rádiológmi [32]. V práci autorov Maeger-

lein et al. bol skúmaný aj vzťah medzi ča-

sovým odstupom zobrazenia od nástupu 

príznakov a schopnosťou detekcie skorých 

ischemických zmien. Pri rozbore skenov CT 

získaných počas prvej hodiny od vzniku prí-

znakov softvér aj rádiológ vykazovali slabú 

zhodu s konsenzuálnym skóre. V intervale 

1–4 h od vzniku príznakov už analýza po-

mocou AI dosahovala vysokú zhodu s kon-

senzuálnym skóre (k = 0,78), zatiaľ čo ľudský 

výkon bol hodnotený ako slabý až uspo-

kojivý. Pri zobrazení po viac ako 4 h už bol 

výkon analytického softvéru aj rádiológa po-

rovnateľný [28]. Pri porovnaní jednotlivých 

komerčných platforiem (Syngo.via Fron-

tier ASPECT Score Prototyp V2, Brainomix 

e-ASPECTS a RAPID ASPECTS, respektíve 

Frontier ASPECTS Prototype a e-ASPECT Bra-

inomix) dosiahol najlepšie výsledky softvér 

e-ASPECTS Brainomix [33,34]. Automatizo-

vané hodnotenie ASPECT skóre môže byť 

menej presné v prípade preexistujúcich ce-

rebrálnych zmien (v prípade leukoencefalo-

patie, v teréne zmien po starších infarktoch 

či iného poškodenia tkaniva) alebo v prí-

pade prítomnosti špirál po koilingu aneu-

ryzmy [1,23]. Taktiež je, rovnako ako hod-

notenie rádiológom, ovplyvnené kvalitou 

obrazu, čo potvrdzujú aj výsledky štúdie po-

sudzujúcej efekt rôznych rekonštrukčných 

algoritmov na hodnotenie ASPECT skóre 

štyrmi dia gnostikmi a softvérom e-ASPECT 

Brainomix [26]. Dokumentovaný je aj vplyv 

hrúbky rezu na výkon softvéru. S narastajú-

cou hrúbkou rezu sa jeho výkon podstatne 

znižuje [35]. 

Detekcia uzáveru veľkej tepny
Uzáver veľkej tepny je príčinou približne tre-

tiny ischemických CMP. Ak však nie je včas 

adekvátne liečená, spôsobuje závažné neu-

rologické postihnutie a jej podiel na s ische-

mickým iktom asociovanej mortalite činí až 

90 %. Vysokoúčinnou terapeutickou proce-

dúrou u týchto pacientov je endovaskulárna 

trombektómia, obmedzená časovým oknom 

maximálne 24 h od nástupu príznakov. 

Z týchto dôvodov je nevyhnutná promptná 

a presná zobrazovacia dia gnostika, zvlášť 

na periférnych pracoviskách kvôli zabezpe-

čeniu čo najrýchlejšieho transportu do cen-

tra s možnosťou EVL [36,37]. Detekcia uzá-

veru veľkej tepny nepredstavuje pre experta 

v neurozobrazovaní dia gnostickú výzvu, 

hlavný prínos technológií AI spočíva v zrých-

lení dia gnostického a rozhodovacieho pro-

cesu. Slúžia tiež ako podporný nástroj pre 

menej skúsených dia gnostikov [8]. Uzáver 

artérie veľkého kalibru je možné detego-

vať už na natívnom CT zobrazení ako prí-

znak hyperdenznej cievy (obr. 2). Príznak 

hyperdenznej cievy je prejavom na eryt-

rocyty bohatého intraarteriálneho trom-

bembolu [38,39]. Patrí k skorým markerom 

Obr. 1. (A) Natívne vyšetrenie CT mozgu – zobrazené sú čerstvé ischemické zmeny v po-
vodí arteria cerebral media vľavo – v oblasti inzuly, v M1 a M2 zóne (šípka). (B) Identický 
pacient, červenou sú označené ischemické zmeny rozpoznané softvérom umelej inteli-
gencie e-ASPECTS Brainomix®, z natívneho vyšetrenia CT (ASPECT skóre 7).  
ASPECT – Alberta Stroke Program Early CT Score

Fig. 1. (A) Native CT scan of the brain – acute ischemic changes are displayed in the left 
middle cerebral artery territory – in the insula, M1 and M2 zones (arrow). (B) The same 
patient, ischemic changes recognized by artifi cial intelligence software e-ASPECTS 
Brainomix® from a native CT scan are marked red (ASPECT score 7). 
ASPECT – Alberta Stroke Program Early CT Score

A B

Obr. 2. (A) Natívne vyšetrenie CT mozgu – príznak hyperdenznej cievy pri uzávere M1 
segmentu arteria cerebral media vľavo (šípka). (B) Identický pacient, detekcia uzáveru 
M1 segmentu arteria cerebri media vľavo z natívneho vyšetrenia CT softvérom umelej 
inteligencie e-ASPECTS Brainomix® (označené modrou).
Fig. 2. (A) Native CT scan of the brain – hyperdense vessel sign as a sign of occlusion 
of the left middle cerebral artery M1 segment (arrow). (B) Same patient; left middle
cerebral artery M1 segment occlusion recognized by artifi cial intelligence software 
e-ASPECTS Brainomix® from a native CT scan (marked blue). 

A B
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ischemickej CMP, rozpoznateľný je na roz-

diel od ischemických zmien tkanivá už bez-

prostredne po uzávere tepny. Reprezentuje 

tak dokonalú dia gnostickú podporu v ča-

sovo kritických prípadoch ischemickej CMP, 

zvlášť v malých periférnych nemocniciach, 

kde nie je zabezpečená dostupnosť CTA 

v režime 24/ 7 [8]. Pomáha k rýchlejšej iden-

tifikácii kandidátov na reperfúznu liečbu, 

bez nutnosti podania kontrastnej látky a ďal-

šieho ožiarenia. Niektoré platformy posky-

tujú aj informácie o dĺžke a objeme trombu, 

pričom objem trombu a jeho hustota sú pre-

diktory neúspešnej rekanalizácie po podaní 

trombolýzy, čo predpovedá nutnosť inter-

venčného zákroku [40]. Komerčné softvéry 

na detekciu príznaku hyperdentnej cievy za-

znamenali v štúdiách senzitivitu 70–97,5 % 

a špecifi citu 71–96 %, štúdie dokumentujú 

aj výrazne kratší vyhodnocovací čas softvé-

rov v porovnaní s rádiológmi [38–40]. Podľa 

aktuálnych odporúčaní má však prítomnosť 

uzáveru potvrdiť neinvazívne angiografi cké 

zobrazenie [40], štandardom je CTA. Aj pri jej 

vyhodnocovaní možno aplikovať algoritmy 

strojového učenia (obr. 3) [8]. V posledných 

rokoch bolo publikovaných niekoľko prác 

posudzujúcich spoľahlivosť viacerých ko-

merčných softvérov v detekcii uzáveru veľ-

kej tepny v prednej cirkulácii (M1 segment 

arteria cerebri media [ACM], rozsah detego-

vaného uzáveru ACM sa líši v závislosti od 

štúdie, niektoré zahàňali aj uzáver proximál-

neho M2 segmentu) z CTA na základe porov-

nania s hodnotením skúsených dia gnostikov. 

Štúdie detegovali strednú až vysokú sen-

zitivitu aj špecifi citu v detekcii uzáveru veľ-

kej tepny (tab. 1), zhodujú sa v nižšej schop-

nosti detekcie periférnejších oklúzií, ktoré 

sú tiež potenciálne endovaskulárne ošetri-

teľné. Výsledky týchto prác podporujú pou-

žívanie programov AI ako doplnkového pro-

striedku pre urýchlenie dia gnózy. Aktuálne 

ich dia gnostická presnosť nie je dosta-

točná na to, aby nahradila odborné hodno-

tenie skúseným, certifi kovaným neurodia-

gnostikom [6,36–42]. Seker et al. uvádzajú, 

že výkon e-CTA Brainomix programu je po-

rovnateľný s hodnotením rádiológov v špe-

cializačnej príprave [42]. Falošne pozitívne 

detegované uzávery sú spôsobené najmä 

asymetriou ciev, ktorú rádiológ vizuál-

nou kontrolou ľahko odlíši od uzáveru veľ-

kej tepny. Falošne negatívne nálezy možno 

vysvetliť neschopnosťou algoritmu roz-

poznať uzáver pri nedostatočnom znížení 

denzity cievy – pri nekompletnom uzávere 

alebo bohatom kolaterálnom obehu, v prí-

pade petrózneho a klinoidného segmentu 

cerebri media, môže byť falošná negativita 

spôsobená aj neadekvátnym výkonom kost-

nej masky [36]. Do budúcna sú pre nástroje 

AI v tejto sfére výzvami hlavne optimalizácia 

detekcie distálnych uzáverov a uzáverov vo 

vertebro-bazilárnom povodí, oddiferenco-

vanie uzáveru od aterosklerózy a akútneho 

a chronického uzáveru [22,40]. 

Zhodnotenie kolaterálneho obehu 
Jedným z kľúčových faktorov, od ktorého zá-

visí efekt trombektómie je stav kolaterálneho 

obehu [43]. Slabý kolaterálny obeh je asocio-

vaný s rýchlou progresiou infarktu, u tejto 

Tab. 1. Výsledky štúdií skúmajúcich spoľahlivosť komerčných softvérov v detekcii uzáveru veľkej tepny v prednej cirkulácii z CTA.

Štúdia Testovaný softvér Senzitivita Špecifi cita Presnosť PPV NPV
Amukotuwa et al. [36] RAPID CTA 94 % 765 – 43 % 98 %

Barreira et al. [37] Viz-AI- Algorithm v3.04 90,1 % 82,5 % 86 % 81,8 % 90,6 %

Olive-Gadea et al. [40]
MethinksLVO, (Methinks Soft ware 

S.L. Barcelona, Španielsko)
71,3 % 83,2 % – 79 % 76 %

Rodriguez et al. [41] Viz-LVO Algorithm® v1.4 87,6 % 88,5 % 87,9 % – –

Seker et al. [42] eCTA Brainomix 84 % 96 % 89 % 96 % 84 %

Yahav-Dovrat et al. [6] Viz LVO 81 % 96 % 94 % 65 % 99 %

NPV – čistá současná hodnota; PPV – pozitivní prognostická hodnota

Obr. 3. (A) Miesto uzáveru M1 segmentu arteria cerebri media vľavo detegované umelou 
inteligenciou z CTA, označené v červenom kruhu. (B) Identický pacient, označenie miesta 
uzáveru M1 segmentu arteria cerebri media vľavo softvérom umelej inteligencie e-CTA 
Brainomix® z CTA aj na koronálnych MIP rekonštrukciách, označené v červenom kruhu.
MIP – maximum intensity projection

Fig. 3. (A) Occlusion site of the left middle cerebral artery M1 segment detected by arti-
fi cial intelligence from CTA, marked in a red circle. (B) Same patient; occlusion site of the 
left middle cerebral artery M1 segment marked by artifi cial intelligence software e-CTA 
Brainomix® from CTA even in coronal MIP reconstruction, marked in a red circle.
MIP – maximum intensity projection

A B

proLékaře.cz | 3.2.2026



VYUŽITIE UMELEJ INTELIGENCIE PRI HODNOTENÍ OBRAZU CT U PACIENTOV S CMP  AKTUÁLNE MOŽNOSTI

Cesk Slov Ne urol N 2024; 87/ 120(1): 32– 40 37

vých dátach, čo môže mať potenciálny vplyv 

na rozhodnutie o liečbe [8]. Napr. v apliká-

ciách RAPID a Brainomix je ischemické jadro 

defi nované ako tkanivo s minimálne 70% re-

dukciou prietoku krvi (rCBF < 30 %) v porov-

naní s nepostihnutou hemisférou, Syngo.via 

CT Neuro Perfusion VB30 (Siemens Healthi-

neers, Erlangen, Nemecko) používa ako prah 

80% pokles prietoku (rCBF < 20 %). Všetky 

spomenuté softvéry za hypoperfúziu po-

važujú predĺženie času k maximálnej den-

zite reziduálnej funkcie – T max (čas, za ktorý 

bolus kontrastnej látky prejde z proximálnej 

veľkej artérie do mozgového tkanivá) na viac 

ako 6 s [50]. Je nutné zdôrazniť, že väčšina sú-

časných techník priamo nevyužíva algoritmy 

AI. Ich mínusom je citlivosť na šum, nutnosť 

ľudského vstupu pri kontrole kvality kriviek 

nasýtenia bolusu kontrastnej látky v arteriál-

nom a venóznom riečisku a aj pri potrebe 

oddiferencovania artefaktov od skutočného 

perfúzneho defi citu. Aktuálnym predmetom 

výskumu je preto vylepšenie alebo náhrada 

terajších perfúznych algoritmov [48]. Z už 

FDA schválených a CE (Conformité Europé-

enne) označených softvérov využíva na po-

súdenie perfúzie AI, konkrétne konvolučné 

neurónové siete, Icobrain-CTP (Icometrix 

Leuven, Belgicko). Týmto softvérom odhad-

nuté objemy jadra a penumbry v štúdiách 

vykazovali silnú zhodu s výsledkami vyhod-

notenými rádiológmi [15]. Autormi Kasasbeh 

et al. bola navrhnutá umelá neurónová sieť, 

ktorá je schopná presne predpovedať veľ-

kosť jadra ischémie na základe dát z perfúz-

neho CT a vstupných klinických dát (pohla-

vie, vek, National Institutes of Health Stroke 

Scale (NIHSS), čas od vzniku príznakov po zo-

brazovacie vyšetrenie). Testovaná bola na 

vzorke 128 pacientov a priemerná absolútna 

chyba medzi objemom jadra predpoveda-

ným neurónovou sieťou a objemom jadra 

zisteným z MR-DWI bola 13,8 ml [51]. Pou-

žitie algoritmov hlbokého učenia na efek-

tívne určenie jadra a penumbry na perfúz-

nych mapách a ich porovnanie s aktuálne 

používanými metódami skúmali vo svojej 

práci Bhurwani et al. Trénované techniky hl-

bokého učenia boli presnejšie a prekonali 

súčasné metódy [52]. Wouters et al. predsta-

vili hlbokú neurónovú sieť, ktorá je schopná 

nielen lepšie predpovedať fi nálny objem in-

farktu z perfúzneho CT v porovnaní s klasic-

kým spracovaním (porovnávané so softvé-

rom RAPID), dokáže tiež predikovať fi nálny 

objem infarktu pri rôznych scenároch úspeš-

nosti rekanalizácie a rôznom časovom in-

tervale do rekanalizácie. Bežne používané 

vacieho procesu (obr. 4) [46]. Objektívna, au-

tomatizovaná kalkulácia kolaterálneho skóre 

je predmetom skúmania niekoľkých štúdií. 

V práci autorov Grunwald et al. bol posudzo-

vaný stupeň zhody medzi softvérom a refe-

renčným štandardom určeným konsenzom 

medzi tromi skúsenými neurorádiológmi. 

Výsledkom bol 90% podiel zhody softvéru 

s referenčným štandardom [46]. V ďalšej 

štúdii bol porovnávaný výkon programu 

a 29 rádiológov s rôznou dĺžkou praxe voči 

referenčnému štandardu určenému dvomi, 

v prípade nejednoznačnej zhody tromi, ne-

závislými neurorádiológmi. Program AI do-

siahol podobné výsledky ako rádiológovia. 

Zaujímavým poznatkom tejto štúdie bolo, 

že po 1 hodine tréningu nebol zazname-

naný rozdiel v presnosti hodnotenia v zá-

vislosti od skúseností hodnotiaceho [43]. 

Jabal et al. zaznamenali, že použitie softvéru 

viedlo k signifi kantnému zvýšeniu presnosti 

bodovania a k redukcii variability medzi hod-

notiacimi [47]. Tieto zistenia podporujú im-

plementáciu metód AI pri posudzovaní ko-

laterálneho obehu do klinickej praxe ako 

užitočného prostriedku na zníženie zauja-

tosti a identifi káciu pacientov profi tujúcich 

z trombektómie [45].

Perfúzne mapy
V prípade pacientov s neznámym časom 

vzniku ischemickej CMP alebo u pacientov 

v predĺženom časovom okne (po viac ako 

6 h od vzniku príznakov) je v rámci procesu 

selekcie vhodných kandidátov pred zvažova-

nou EVL nutné realizovať zobrazenie mozgo-

vej perfúzie k posúdeniu veľkosti jadra a pe-

numbry [21,48]. Za najpresnejšiu metódu je 

považované zobrazenie MR. Na mnohých 

pracoviskách je však problém zabezpečiť 

jeho nepretržitú dostupnosť. V klinickej praxi 

sa preto rutinne využíva dostupnejšia alter-

natíva, perfúzne vyšetrenie CT [49]. Perfú-

zia CT je založená na dynamickom sledovaní 

prvého prechodu bolusu kontrastnej látky 

cerebrálnou cirkuláciou. Na následné spraco-

vanie dát z perfúzneho CT bolo vyvinutých 

viacero komerčných softvérov. Prevažná časť 

aktuálne používaných programov automa-

ticky generuje parametrické mapy (obr. 5) 

a identifikuje jadro, penumbru a ich vzá-

jomný pomer pomocou dekonvolúcie tka-

nivových a arteriálnych signálov. Perfúzne 

parametre v postihnutej oblasti sú porov-

návané s kontralaterálnou hemisférou, pri-

čom rôzne aplikácie používajú odlišný kvan-

titatívny prah na defi níciu jadra a produkujú 

tak odlišné výsledky aj pri rovnakých zdrojo-

skupiny pacientov je pre záchranu tkaniva 

nevyhnutná urgentná dia gnostika a liečba. 

Naopak, bohaté kolaterály predikujú pomalý 

rozvoj infarktu, dlhšie časové okno a lepší 

funkčný výsledok rekanalizácie [36]. Pre op-

timálne hodnotenie kolaterálneho obehu by 

skenovanie malo byť realizované v neskorej 

arteriálnej alebo skorej venóznej fáze [8]. Na 

hodnotenie stavu kolaterál v povodí uzav-

retej ACM z CTA je najpoužívanejší štvor-

stupňový skórovací systém, Tan skóre – od 

0 (bez prítomnosti kolaterál) po 3 (100% pl-

nenie postihnutej oblasti) [44]. Ide o časovo 

náročný a často zložitý proces kvôli kom-

plexnej neurovaskulatúre intrakránia [45]. 

Problémom vizuálneho bodovania kolaterál-

neho obehu rádiológmi je najmä nekonzis-

tentnosť medzi jednotlivými hodnotiacimi, 

keďže ide o subjektívne hodnotenie. Jed-

ným z riešení tejto variability je začlenenie 

softvéru strojového učenia do vyhodnoco-

Obr. 4. Vyhodnotenie stavu kolaterálneho 
obehu v povodí uzavretej ACM vľavo po-
mocou softvéru umelej inteligencie 
e-CTA Brainomix® z CTA – podľa hodno-
tenia softvéru kolaterálny obeh zásobuje 
35 % povodia uzavretej tepny, Tan kolate-
rálne skóre = 1. 
AIF – arterial input function; ICA – arteria ca-

rotis interna; ACM – arteria cerebri media; 

VOF – venous output function

Fig. 4. Assessment of the collateral circula-
tion state in the territory of the occluded 
left middle cerebral artery using artifi cial 
intelligence software e-CTA Brainomix® 
from CTA – according to the software eva-
luation, the collateral circulation supplies 
35% of the occluded artery territory, Tan 
collateral score = 1. 
AIF – arterial input function; ICA – internal 

carotid artery; ACM – middle cerebral artery; 

VOF – venous output function

Hustota ciev

Pomer: 35 %

Pomer kolaterálov CTA: 1

Strana: ľavá

Oklúzia

Strana: ľavá

ACI/proximálne ACM

Akvizícia

Fáza: rovnovážne

AIF: 276 HU

VOF: 197 HU
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znamenaná vysoká presnosť týchto algorit-

mov v detekcii hemorágie, s plochou pod 

krivkou (area under curve; AUC) dosahujú-

cou až 0,99, senzitivitou 98 % a špecifi citou 

99 % [54,57]. Ako príčinu falošnej negati-

vity štúdie uvádzajú malý objem hemorágie 

(< 1,5 ml) a hemorágiu lokalizovanú v oblasti 

chronických patologických zmien (starší he-

matóm, area gliózy). Falošná pozitivita bola 

zaznamenaná v prípade kalcifi kátov, menin-

geómu, hyperdenznej tumoróznej masy, ko-

loidnej cysty, aneuryzmy, zhrubnutej dury, 

zobrazovacích artefaktov či v teréne posto-

peračných zmien [55,58,59]. Algoritmy do-

sahujú rozdielny level úspešnosti detekcie 

kej formy iktu pred podaním trombolytickej 

liečby. Aj v prípade prítomnosti intrakraniál-

nej hemorágie je jedným z dôležitých fakto-

rov ovplyvňujúcich klinický výstup pacienta 

promptná interpretácia nálezu [53,54]. Na 

zefektívnenie dia gnostického procesu boli 

vyvinuté softvéry schopné z natívneho vy-

šetrenia CT hemorágiu identifi kovať (obr. 6), 

stanoviť jej objem a upozorniť na jej prítom-

nosť hodnotiaceho lekára [55]. Nedávne 

publikácie poukázali na ich technickú rea-

lizovateľnosť a priaznivý vplyv na repriori-

tizáciu pracovného zoznamu, rýchlosť vy-

hodnotenia nálezu a dĺžku nemocničného 

pobytu [56]. Vo viacerých súboroch bola za-

softvéry dokážu predpovedať konečnú veľ-

kosť infarktu len pri dosiahnutí kompletnej 

rekanalizície alebo naopak, v prípade ab-

sencie rekanalizácie. Vytvorená neurónová 

sieť dokonca generuje modely predpove-

dajúce rýchlosť rastu infarktu, tzv. „tkani-

vové hodiny“. Táto funkcia môže byť nápo-

mocná napríklad pri rozhodovaní o potrebe 

opakovaného neurozobrazenia u pacientov 

transportovaných do centra EVL [47]. 

Hemorágia
U pacientov so suponovanou CMP je esen-

ciálnou úlohou vstupne realizovaného na-

tívneho vyšetrenia CT vylúčenie hemoragic-

Obr. 5. Perfúzne mapy vygenerované softvérom e-CTP Brainomix® zobrazujú hypoperfúziu v povodí arteria cerebri media vpravo, ob-
jem jadra je 24 ml, objem penumbry 102 ml, relatívny „mismatch“ je 81 %. Nález je indikovaný k endovaskulárnej liečbe. 
MTT – mean transtit time; rCBF – relative cerebral blood fl ow; rCBV – relative cerebral blood volume; Tmax – time to maximum; TTP – time to 

peak

Fig. 5. Perfusion maps generated by e-CTP Brainomix® software show hypoperfusion in the right middle cerebral artery territory, is-
chemic core volume is 24 mL, penumbra volume is 102 mL, and relative “mismatch” is 81%. This fi nding is an indication for endovascu-
lar treatment. 
MTT – mean transit time; rCBF – relative cerebral blood fl ow; rCBV – relative cerebral blood volume; Tmax – time to maximum; TTP – time to 

peak
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vity, skrátenie času do liečby a redukciu chýb 

a pomáha tým zlepšiť kvalitu starostlivosti 

o pacienta [16]. Nevýhodou tohto konceptu 

je fakt, že vyhodnocovacie zručnosti rádio-

lóga značne závisia od počtu vyhodnote-

ných vyšetrení a presnosti vizuálnej analýzy 

obrazu. Výsledky niektorých štúdií nazna-

čujú, že použitie softvéru AI pri interpretá-

cii nálezu znižuje ostražitosť hodnotiaceho. 

Začínajúci rádiológ tak nemusí nadobudnúť 

adekvátne interpretačné schopnosti a hrozí 

mu „závislosť“ od AI [8,9]. 

Konfl ikt záujmov

Autori vyhlasujú, že nemajú žiadny potenciálny konfl ikt 

záujmov.
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