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Carotid atherosclerotic plaque stability prediction 
from transversal ultrasound images using deep 
learning

Predikce stability aterosklerotického plátu 

z transverzálních ultrazvukových obrazů 

pomocí hlubokého učení

Abstract
Aim: To automatically predict the stability of carotid artery plaque from standard B-mode 

transversal ultrasound images using deep learning. A reliable predictor would reduce the need 

for fol low-up examination and pharmacological and surgical treatment. Methods: A region of 

interest containing the carotid artery was automatically localized. An adversarial segmentation 

method was trained on a combination of a small pixelwise annotated dataset and a larger weakly 

annotated dataset. A multicriterion regression with automatic weight adaptation was applied to 

predict a series of clinically relevant attributes, including the plaque width increase over 3 years. 

Results: The current plaque width could be estimated with a high correlation (ρ = 0.32) and a very 

high statistical signifi cance. The estimated future increase of the plaque width was correlated less 

(ρ = 0.22) but statistically signifi cantly (P < 0.01). The correlation between automatic and expert 

assessments of echogenicity, smoothness and calcifi cation was even smaller. Conclusion: We 

confi rmed a relationship between the plaque appearance in ultrasound and the probability of its 

future growth, but it is too weak to be used in clinical practice as the sole predictor of the plaque 

stability.

Souhrn
Cíl: Automaticky předpovídat stabilitu aterosklerotického plátu v karotidě ze standardních 

transverzálních ultrazvukových obrazů v B-modu za použití hlubokého učení. Spolehlivý prediktor 

by snížil potřebu klinických kontrol i farmakologické či chirurgické léčby. Metody: Automaticky byla 

lokalizována oblast zájmu obsahující karotidu. Adversariální metoda segmentace byla natrénována 

na kombinaci malého kompletně anotovaného datasetu a většího slabě anotovaného datasetu. 

Multikriteriální regrese s automatickou adaptací vah byla použita k predikci série klinicky 

relevantních atributů, vč. nárůstu tloušťky plátu během 3 let. Výsledky: Současnou šíři plátu 

bylo možno odhadnout s vysokou korelací (ρ = 0,32) a velmi vysokou statistickou signifi kancí. 

Odhadovaný budoucí nárůst šíře plátu byl korelován méně (ρ = 0,22), ale stále statisticky významně 

(p < 0,01). Korelace mezi automatickým a expertním hodnocením echogenicity, hladkosti 

a kalcifi kací byla ještě nižší. Závěr: Potvrdili jsme závislost mezi vzhledem plátu v ultrazvukovém 

obraze a pravděpodobností jeho budoucího růstu, ale je příliš slabá, než aby byla využitelná 

v klinické praxi jako jediný prediktor stability plátu.
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Introduction
Carotid artery atherosclerotic plaques are 

present in over half of the population at the 

age of 50 [1]. In most cases, the plaques are 

stable, asymptomatic, and present no health 

hazard. However, some plaques keep grow-

ing rapidly and may lead to thrombosis or 

thromboembolism with possible blockage 

of the blood supply to the brain.

Atherosclerotic plaques can be studied 

by histology [2], CT, MRI [3], Doppler ultra-

sound [4] or other methods. Nowadays, the 

vast majority of carotid artery atherosclerotic 

plaques are detected by standard B-mode 

ultrasonographic screening [5]. This work 

aims to use these B-mode images to predict 

whether the plaque is stable (and will not 

grow substantially) or unstable and needs 

to be treated more aggressively. A success 

would have a profound eff ect in reducing 

the need for fol low-up examinations, phar-

macological treatment, and surgery.

Previous studies have shown that athero-

sclerotic plaque stability is related to some 

manually or semi-automatically evaluated 

characteristics derived from the ultrasound 

image such as the plaque width, surface ir-

regularity and exulceration [6,7], echogenic-

ity and homogeneity [8], neovascularity and 

complexity [9], or texture features [10]. How-

ever, the association found was weak, not al-

lowing to make dia gnostic decisions. More-

over, there does not seem to be a consensus 

concerning relevant features. Some studies 

even found no signifi cant relationship [11].

The goal of this work is to automatically 

predict the stability of carotid artery plaque 

from standard B-mode transversal ultra-

sound images using deep learning. We have 

previously shown a fully automatic image 

analysis pipeline [12] calculating geome-

try and wavelet features which were signif-

icantly diff erent (p < 10– 3) between stable 

and unstable plaques, but the accuracy of 

the predictor remained low (61– 62%). Here 

we replace classical image analysis algo-

rithms by deep learning methods, using sev-

eral new techniques for this task, and hope 

to outperform the previous methods.

First, we employ adversarial learning tech-

niques to learn to segment also from the 

electronic caliper images instead of only 

from full pixel-wise annotations. Second, 

we use multicriterion regression with auto-

matic weight adjustment to predict not only 

the plaque width increase but also other 

parameters determined by the sonogra-

phers. We combine the segmentation mask 

and the original image as inputs to a rela-

tively shallow multi-channel regression net-

work. All techniques help to avoid overfi t-

ting and reduce the required annotation 

eff ort.

Materials and methods
Dataset

We used data from the clinical study AN-

TIQUE [13], from which we extracted im-

ages of 413 patients with a median age of 

69 years who had an atherosclerotic plaque 

localized in the carotid bifurcation or prox-

imal part of the internal carotid artery (ICA) 

with a width 2.0 mm  or more and a degree 

of stenosis at least 30% in at least one exami-

nation. The patients were examined approx-

imately every 6 months over the period of 

3 years between 2015 and 2019 using Mind-

ray DC8 ultrasound scanner (Mindray, Shenz-

hen, China) with a linear 3– 12 MHz probe. All 

patients provided an informed consent and 

the images were anonymized before further 

processing. The images were categorized as 

transversal, longitudinal, conical and Dop-

pler [12]. In this work, only transversal images 

were used. Two sets of images from two ex-

amination waves were analyzed for each pa-

tient –  one immediately after enrollment 

and the second after 3 years.

Image attributes

The experts used one key image to deter-

mine the plaque width (denoted d) in mil-

limeters using virtual calipers as well as a set 

of image attributes describing the plaque 

appearance, such as echogenicity or homo-

geneity (see Tab. 1 for a full list). Our main 

prediction target was the positive part of the 

plaque width increase between the two ex-

amination waves:

= max (d
2
 – d

1
, 0).

The full vector of the attributes for image j 

will be denoted v
j
 = (v

j

1, v
j

2, …, v
j

A) with A = 9, 

v
j

1 = d being the plaque width and v
j

2 =  the 

width increase, etc.

In this study, we only used key images to 

avoid discrepancies between the images 

and the expert annotations. For each patient 

and each side (left and right), we therefore 

had two images, called fi rst and second. See 

Fig. 1 (left) for an example.

Tab. 1. Image attributes assigned by experts and the results of their automatic prediction — correlation coeffi  cient ρ, P-value and 
the RMSE. Dashes indicate the prediction was not signifi cantly correlated (P > 0.05).

prediction
symbol name units range ρ P-value RMSE

v
j

1 = d plaque width mm 0–8 0.32 < 10–7 0.88

v
j

2 = Δ width increase mm 0–2 0.22 0.008 0.52

v
j

3 surface smoothness 1–3 0.13 0.04 0.64

v
j

4 echogenicity 1–4 0.12 0.05 1.03

v
j

5 homogenicity 1–2 — — —

v
j

6 low echo area % 0–100 — — —

v
j

7 mid echo area % 0–100 — — —

v
j

8 high echo area % 0–100 — — —

v
j

9 calcifi cation area % 0–100 0.13 0.04 23.5

RMSE – root mean square error
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Localization

For each transversal image, the lumen of 

the ICA was automatically localized using 

a Faster R-CNN architecture [14] trained on 

300 manually annotated images, as described 

in [12]. A region of interest (ROI) centered over 

the carotid artery of size 520 × 520 pixels was 

extracted. See Fig. 1 (center) and 2 (left) for 

examples.

For each key image, an image with the 

distance markers (virtual calipers) in green 

was available (Fig. 1). The cross marker is lo-

cated at the interface between the plaque 

and the lumen and a dashed line connects 

it with the vessel wall. We located the cross 

by template matching in the green channel 

and the wall interface point was determined 

as the furthest green point from the marker. 

Note that markers were not used for the ROI 

localization or any other processing, so our 

method is not restricted to key images.

From the 413 × 2 × 2 = 1,652 potential key 

images, 1,399 were available after ROI and 

marker localization described above. These 

were randomly split into training (80%) and 

testing (20%) part, yielding 568 training and 

147 testing images to estimate  (from the 

fi rst examination wave only) and 1 113 train-

ing and 286 testing images to estimate the 

plaque width d and all other attributes (from 

both examination waves).

Segmentation

To train the segmentation network, we used 

two sets of annotations, strong and weak. 

In the smaller, strongly annotated data-

set Ω
s
, experts assigned each pixel to one 

of m = 4 classes (1 –  background, 2 –  ves-

sel wall, 3 –  plaque, and 4 –  lumen) [12], see 

Fig. 2. There were 111 training (80%) and 

27 testing images (20%), distinct from the 

key images described above. To increase 

the segmentation dataset size, we lever-

aged the already identified distance mark-

ers. We put an ellipsoidal mask with an as-

pect ratio 1 : 4 for the plaque class over the 

line connecting the two markers and cir-

cular masks with the radii 20 and 5 pixels 

touching the line from the outside for the 

lumen and wall classes, respectively (see Fig. 

3, right). This way, we obtained weak seg-

mentation annotations for all 1,399 key im-

ages without requiring any additional time-

consuming manual annotation. We denoted 

the dataset  Ω
w
. The annotations are called 

weak because only a small part of the pix-

els is annotated, which can nevertheless 

guide the segmentation to the correct lo-

cation of the plaque. Both strong and weak 

annotations can be represented by one-

hot encoding, using an indicator vector y
i 
= 

(y
i

1, y
i

2, y
i

3, y
i

4)  {0,1} m for each pixel i, with 

y
i

1=1 indicating background, y
i

2 = 1 the ves-

sel wall etc. For strong annotations the class 

is always determined, ∑
k
y

i

k = 1, while for 

weak annotations in undetermined pixels 

y
i
 = (0,0,0,0).

The segmentation convolutional neural 

network (CNN) S uses a standard U-net [15] 

architecture with Resnet34 [16] back-

bone and softmax output layer with an 

m =  4 channel output f in the range [0,1]. The 

network was trained on a union  Ω =  Ω
s 
  Ω

w
 

of strongly and weekly annotated datasets, 

minimizing the cross-entropy segmentation 

loss function

                                               m

L
seg

 = –mean mean ∑y
i

k logf
i

k (x
j
)

                j Ω         i       k = 1

where the indices j, i, k correspond to train-

ing images, pixels and classes, respectively. 

This way, the undetermined pixels in the 

weakly annotated images are automatically 

ignored. The strongly annotated dataset is 

oversampled 15× to give it more weight. To 

combat overfi tting, we used a wide range of 

augmentation operations: random horizontal 

fl ipping, small translations, rotations and scal-

ing changes, changes of brightness and con-

trast, and multiplicative and additive noise.

Adding the weakly annotated dataset im-

proves the segmentation results with re-

spect to using only the small strongly an-

notated dataset [12]. However, we found 

that the U-net nevertheless sometimes pro-

duced unrealistic and physiologically un-

feasible segmentations. As a remedy, we 

used generative adversarial nets (GANs) [17] 

to learn the model of likely segmenta-

tions [18]. Besides the segmentation net-

work S, we therefore also trained a discrim-

inator D, which should learn to distinguish 

‘real’ human expert segmentations from 

the strongly annotated dataset on one side, 

from ‘fake’ segmentations produced by S on 

both strongly and weakly annotated images 

on the other side. The segmentation net-

work S then learns to generate plausible seg-

mentations which are accepted by the dis-

criminator D as “real”.

We trained the segmentation network 

S to minimize the combined loss function

L
S
 = L

seg
 – mean logD(S(x

j
))

                       j Ω

Fig. 1. The original image (A) with the markers for plaque thickness measurement in green, its cropped version (B) and the automatica-
lly created incomplete weak segmentation (C).
Obr. 1. Původní snímek (A) se značkami pro měření tlouštky plátu zeleně, jeho oříznutá verze (B) a automaticky vytvořená neúplná 
segmentace (C).

A B C
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which rewards S for generating segmen-

tations that are evaluated by the discrimina-

tor D as “real”, corresponding to D(S(x
i
)) ≈ 1. 

The coeffi  cient  controls the trade-off  be-

tween the segmentation error and the prior. 

We used  = 100, the exact value does not 

seem to be critical.

In contrast, the discriminator D was 

trained to minimize

L
D
 = –1 /  |Ω| (∑ log D(y

j
) + ∑ log (1 – D(S(x

j
))))

                          j Ω
s
                    j Ω  

encouraging D to classify all expert seg-

mentations from Ω
s
 as ‘real’ (D ≈ 1) and all 

segmentations generated by S (from both  

Ω
s
 and  Ω

w
) as ‘fake’ (D ≈ 0).

It is notoriously diffi  cult to prevent the dis-

criminator D to work too well and thus de-

prive the segmentor from useful gradient 

feedback, especially in the beginning, when 

S is not well trained. To make the task more 

diffi  cult for the discriminator, we used three 

strategies. First, we added label noise (ran-

domly fl ipping the real/ fake label with prob-

ability 0.1) and we also degraded the seg-

mentations by adding a uniform noise with 

amplitude 0.3 to the class probabilities y
j
 and 

Fig. 2. Example segmentations on the test part of the strongly labeled dataset. From the left: input image, expert segmentation, auto-
matic segmentation.
Obr. 2. Příklady segmentace na testovací části plně označeného datasetu. Zleva: vstupní obrázek, expertní segmentace, automatická 
segmentace.
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S(x
j
) and blurring them with a Gaussian fi lter 

with σ = 3 „pixels“ . The probabilities were 

renormalized to sum to unity afterwards. 

Second, we switched between optimizing 

S and D based on the performance of the 

discriminator D. When its accuracy in distin-

guishing ‘real’ from ‘fake’ segmentations ex-

ceeded 60%, we switched to optimizing the 

segmentor S. When the accuracy dropped 

below 40%, we stoped optimizing S and 

started optimizing D. We used the Adam op-

timizer with a relatively small step size 10–5.

Third, the discriminator CNN D is very 

small. It is a simplified version of the dis-

criminator network from [19], using 4 con-

volutional layers with 3 × 3 kernels and 16, 

32, 64 and 128 channels, respectively. We 

used leakyReLU non-linearities, dropout 

(with probability 0.25), and instance nor-

malization after every convolutional layer. 

The final linear layer with sigmoid non-

linearity produces the desired output value 

D(y)  [0,1].

Examples of automatic segmentations 

are shown in Fig. 2 and 3 (right column) for 

the strongly and weekly annotated images, 

respectively.

Fig. 3. Example segmentations on the test part of the weakly labeled dataset. From the left: input image, automatically derived weak 
segmentation, automatic dense segmentation.
Obr. 3. Příklady segmentací na testovací části datasetu s neúplným označením. Zleva: vstupní obrázek, automatická neúplná segmen-
tace, automatická plná segmentace.
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to overfitting and concentrates on tex-

ture rather than shape. It consists of 5 con-

volutional layers with 3 × 3 kernels, with 32, 

64,128,256, and 64 channels, respectively, 

each fol lowed by batch normalization, max-

pooling, ReLU nonlinearity, and dropout. At 

the end, the number of channels was re-

This way, an equilibrium is found so that 

well estimated attributes are given more 

weight. We also get an estimate σ
i

2 of the es-

timation error. For numerical reasons, we op-

timize z
i
 = log w

i
 instead of w

i
 directly.

We used a small shallow CNN [21] as the 

regression network R, so that it is less prone 

Regression

The image attributes v
j
 to be predicted are 

linearly normalized to the range [0,1] (see 

Table 1 for the original ranges) for better 

numerical stability. We chose to minimize 

a weighted mean squared error (MSE):

                             A

L
reg

 = mean ∑ w
i 
(v

j

i – v
j

i)2

                    j      i = 1

where v
j

i = (v
j

1… v
j

A) are the normalized 

expert-determined attributes, v
j

i = (v
j

1 … v
j

A) 

= R(u
j
) are the normalized predictions and R 

is the prediction network with input u
j
 asso-

ciated with image j (see below for details).

The benefi ts of this multicriterion optimi-

zation are twofold. First, automatically pre-

dicting these plaque image attributes is 

useful in its own right, as they appear to be 

clinically relevant [6]. Second, learning multi-

ple objectives from a shared representation 

is known to improve the learning effi  ciency 

and prediction accuracy [20], probably by 

making it more diffi  cult to overfi t. However, 

the benefit depends on the appropriate 

choice of the weights w
i
, which are diffi  cult 

and time consuming to tune manually. For-

tunatelly, a maximum likelihood formulation 

with a Gaussian model suggested in [20] al-

lows us to treat the weights w
i
 = 1/ (2σ

i

2) as 

additional parameters of a modified loss 

function               

A

L
mreg

 = L
reg 

– 1/2 ∑ log w
i

                                    i = 1

Fig. 4. An example of three channel in-
put for the regression network shown as 
an RGB image: the input image in red, its 
masked plaque region in green and the 
soft mask itself in blue.
Obr. 4. Příklad tříkanálového vstupu pro 
regresní síť zobrazeného jako barevný ob-
rázek: vstupní obrázek červeně, jeho mas-
kovaná oblast plátu zeleně a samotná 
maska modře.

Fig. 5. Scatter plots of the estimated plaque width d (A) and the estimated increase in 
plaque width Δ (B) with respect to expert annotations. The green line shows the least 
squares linear fi t.
Obr. 5. Korelační graf odhadované šířky plátu d (A) a odhadovaného nárůstu šířky plátu 
Δ (B) vzhledem k expertnímu označení. Zelená čára znázorňuje lineární aproximaci me-
todou nejmenších čtverců.
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tem producing |ρ‘|>|ρ| under the normality 

assumption (calculated using the Pearson´s 

function from the SciPy Python library). We 

do not show these performance criteria if 

the correlation is not signifi cant at least at 

the 0.05 level.

We see that out of the 9 image attrib-

utes, we can predict two at the 0.01 sig-

nifi cance level. First, the estimation of the 

plaque width d correlates very signifi cantly 

with the reference values, although the ρ = 

0.32 correlation is far from the ideal value of 

ρ = 1. Second, our estimate of , the future 

increase of the plaque width, is also signifi -

cantly correlated with the reference values, 

although the correlation is smaller, ρ = 0.22. 

Fig. 5 shows the predicted and reference val-

ues as a scatter plot. We can see that the cor-

relation is indeed present but weak. Note 

also that the distribution of  is highly non-

symmetric –  low values of  are much more 

frequent than high values, making the re-

gression challenging.

Besides regression, we also evaluated the 

prediction of  in a binary classifi cation prob-

lem framework. The two classes are stable 

and unstable, defi ned by thresh olding ≥ . 
For comparability with [6,12], the threshold 

was set at  = 0.4 mm, which corresponds 

to twice the estimated plaque width meas-

urement error. Fig. 6 shows the ROC (receiver 

operating characteristic curve) of this classi-

where [·] is the Iverson bracket, equal to 

1 if the expression is true and 0 otherwise. 

The third channel is the (soft) plaque mask 

itself

u
i

3 = f
i

3

where i is the pixel index, f is the segmen-

tation network output and 3 corresponds to 

the plaque class. See Fig. 4 for an example.

To encourage the network to use all chan-

nels, we randomly replaced each chan-

nel with zeros with the probability 0.5. This 

can be considered a channel-level dropout. 

Other augmentation operations were stand-

ard: random horizontal fl ip, rotation ± 40°, 

scale change ± 10%, and random cropping 

to the fi nal input size 384 × 384 pixels.

Results
The prediction performance was evaluated 

on the test part of the dataset (not used in 

training) by comparing the predicted and 

reference (expert-determined) attributes 

v
j

i. Table 1 shows the calculated root mean 

squared error (RMSE, after denormalization 

to the original range), the Pearson’s correla-

tion coeffi  cient ρ and the associated proba-

bility P (signifi cance) of an uncorrelated sys-

duced to A and passed again through batch 

normalization, ReLU nonlinearity, dropout, 

and a fi nal linear layer.

The usual approach would be to feed the 

regression network R the input image multi-

plied by a mask, leaving only the plaque re-

gion. This would allow the regression net-

work to focus on the plaque region. Some 

features, like the plaque width, can be di-

rectly derived from the plaque mask. Unfor-

tunately, this makes the regression vulnera-

ble to segmentation errors. Alternatively, we 

could use the original, unmasked images 

as inputs, thus avoiding the dependency 

on the segmentation. Unfortunately, our 

set of image annotations was too small to 

train the regression network to focus on the 

plaque. We therefore decided to combine 

these approaches and use three channels 

as the input u = (u1, u2, u3) of the regression 

network R. The fi rst channel is the cropped 

grayscale image

u
i

1 = x
i

the second is the image limited to the 

plaque region using the automatic segmen-

tation output

u
i

2 = x
i
 [argmax f

i

k = 3]
                         k

Fig. 6. ROC curve of an image-based classifi er between stable and progressive plaques, 
defi ned as Δ ≥ 0.4 mm. The dot corresponds to the maximum F1 working point. The 
dashed line corresponds to a random choice. AUC = 0.609.
AUC – area under curve; ROC – receiver operating characteristic

Obr. 6. ROC křivka klasifi kátoru rozlišujícího mezi stabilními a progresivními pláty, defi -
novaná jako Δ ≥ 0,4 mm. Tečka odpovídá pracovnímu bodu maximalizujícímu hodnotu 
F1. Přerušovaná čára odpovídá náhodnému výběru. AUC = 0,609.
AUC – plocha pod křivkou; ROC – receiver operating characteristic

Tab. 2. Confusion matrix (top) and 
statistical performance fi gures 
(bottom) of an image-based classi-
fi er between stable and progressive 
plaques (defi ned as Δ ≥ 0.4 mm ) at 
a working point maximizing F1.

true
predicted

stable unstable

stable 114 121

unstable 14 37

AUC 0.609

accuracy 0.528

sensitivity 0.725

precision 0.234

specifi city 0.485

F
1

0.354

odds ratio 2.14

AUC – area under curve

proLékaře.cz | 4.2.2026



262

CAROTID ATHEROSCLEROTIC PLAQUE STABILITY PREDICTION FROM TRANSVERSAL ULTRASOUND IMAGES

Cesk Slov Ne urol N 2024; 87/ 120(4): 255– 263

Consent to publish

This manuscript contains no identifiable individual’s per-

sonal data.

Acknowledgements

We thank M. Hekrdla for data curation, M. Kostelanský, 

D. Baručić, A. Manzano-Rodriguez, and S. Kaushik for 

implementing and making available the method de-

scribed in [12], and O. Dvorský for setting up the CVAT 

annotation server.

References

1. Salonen R, Seppänen K, Rauramaa R et al. Prevalence 

of carotid atherosclerosis and serum cholesterol levels in 

eastern Finland. Arteriosclerosis 1988; 8(6): 788– 792. doi: 

10.1161/ 01.atv.8.6.788.

2. Svoboda N, Voldřich R, Mandys V et al. Histologi-

cal analysis of carotid plaques: the predictors of stroke 

risk. J Stroke Cerebrovasc Dis 2022; 31(3): 106262. doi: 

10.1016/ j.jstrokecerebrovasdis.2021.106262.

3. Brinjikji W, Huston J, Rabinstein AA et al. Contempo-

rary carotid imaging: from degree of stenosis to plaque 

vulnerability. J Neurosurg 2016; 124(1): 27– 42. doi: 

10.3171/ 2015.1.JNS142452.

4. Chen X, Kong Z, Wei S et al. Ultrasound lmaging-vul-

nerable plaque dia gnostics: automatic carotid plaque 

segmentation based on deep learning. J Radiat Res 2023; 

16(3): 100598. doi: 10.1016/ j.jrras.2023.100598.

5. Nicolaides A, Beach KW, Kyriacou E et al. Ultra-

sound and carotid bifurcation atherosclerosis. London: 

Springer-Verlag 2013. doi: 10.1007/ 978-1-84882-688-5.

6. Školoudík D, Kešnerová B, Hrbáč T et al. Vizuální hod-

nocení a digitální analýza ultrazvukového obrazu u sta-

bilního a progredujícího aterosklerotického plátu 

v karotické tepně. Cesk Slov Neurol N 2021; 84/ 117(1): 

38– 44. doi: 10.48095/ cccsnn202138.

7. Salem MK, Bown MJ, Sayers RD et al. Identifi cation of 

patients with a histologically unstable carotid plaque 

using ultrasonic plaque image analysis. Eur J Vasc End-

ovasc Surg 2014; 48(2): 118– 125. doi: 10.1016/ j.ejvs.2014.

05.015.

8. Doonan RJ, Gorgui J, Veinot JP et al. Plaque echoden-

sity and textural features are associated with histo-

logic carotid plaque instability. J Vasc Surg 2016; 64(3): 

671– 677.e8. doi: 10.1016/ j.jvs.2016.03.423.

9. Brinjikji W, Rabinstein AA, Lanzino G et al. Ultrasound 

characteristics of symptomatic carotid plaques: a sys-

tematic review and meta-analysis. Cerebrovasc Dis 2015; 

40(3– 4): 165– 174. doi: 10.1159/ 000437339.

10. Kakkos SK, Nicolaides AN, Kyriacou E et al. Computer-

ized texture analysis of carotid plaque ultrasonic images 

can identify unstable plaques associated with ipsilateral 

neurological symptoms. Angiology 2011; 62(4): 317– 328. 

doi: 10.1177/ 0003319710384397.

11. D‘Oria M, Chiarandini S, Pipitone MD et al. Con-

trast Enhanced Ultrasound (CEUS) is not able to iden-

tify vulnerable plaques in asymptomatic carotid ather-

osclerotic dis ease. Eur J Vasc Endovasc Surg 2018; 56(5): 

632– 642. doi: 10.1016/ j.ejvs.2018.07.024.

12. Kostelanský M, Manzano-Rodríguez A, Kybic J et al. 

Differentiating between stable and progressive ca-

rotid atherosclerotic plaques from in-vivo ultrasound 

images using texture descriptors. In: Proceedings of 

the SPIE 2021; 12088: 120881L 10. doi: 10.1117/ 12.2605

795.

13. Školoudík D. Atherosclerotic plaque characteristics as-

sociated with a progression rate of the plaque in carotids 

and a risk of stroke. Clinical trial NCT02360137 (2015). [on-

line]. Available from: https:/ / clinicaltrials.gov/ ct2/

 show/ NCT02360137.

14. Ren S, He K, Girshick RB et al. Faster R-CNN: Towards 

real-time object detection with region proposal net-

others. Let us also emphasize our relatively 

good performance in determining the cur-

rent plaque width, which we already know 

to be a relevant factor for predicting the 

stability [6].

Since our deep-learning created features 

are not directly related to human-designed 

features used before [12], there is a hope that 

combining them might further improve the 

prediction performance. On the other hand, 

a pessimistic interpretation of our results is 

that further improvement is unlikely since 

the plaque growth depends on other fac-

tors that are not captured by the ultrasound 

image.

We yet need to explain our failure to pre-

dict the other image attributes, such as 

echogenicity and homogeneity. We can 

only hypothesize that this might be caused 

by inconsistent annotations, as characteriz-

ing plaques with a naked eye is often unre-

liable and has high intra- and inter-observer 

variability [22,25].

From the methodological point of view, 

we have applied several new techniques to 

both segmentation and regression, which 

might be useful for other tasks, too. They 

are based on previous work but adapted to 

our task. In particular, we have used GANs to 

model feasible segmentations, employed 

automatically generated weak annotations, 

and multi-criterion and multi-channel re-

gression with channel-level dropout.

Ethics approval

The study was performed according to Helsinki Declara-

tion of 1975 (and its 2004 and 2008 revisions). All partici-

pants provided an informed consent. We used data from 

the clinical study ANTIQUE [13], which was approved 

by the Ethics Board of the Faculty Hospital Ostrava (ap-

proval number 605/ 2014, 31 July 2014) and Ethics Com-

mittee of the Central Military Hospital Prague (approval 

number 108/ 12-44/ 2018, 11 June 2018). All participants 

provided an informed consent.

Funding

The authors acknowledge the support of the Czech

Health Research Council project NV19-08-00362. All 

rights reserved.

Competing interests

The authors have no relevant fi nancial or non-fi nancial 

interests to disclose.

Author Contributions

Jan Kybic performed image analysis, machine learn-

ing, implementation, experiments, writing and edit-

ing. David Pakizer, Jiří Kozel and Patricie Michalčová per-

formed data annotation. František Charvát performed 

data collection and evaluation. David Školoudík sug-

gested the concept, provided medical expertise, and 

worked on data acquisition, curation, and editing. All au-

thors read and approved the fi nal manuscript.

fier with a working point maximizing the 

F
1
 score. The confusion matrix and standard 

binary classifi cation performance measures 

are shown in Tab. 2. We see that the classi-

fier is far from perfect, but also clearly above 

random choice.

Discussion and conclusions
Using artifi cial intelligence methods for ca-

rotid plaque detection and characteriza-

tion in ultrasound, as well as in other modal-

ities, is an active area of research described 

in a number of review articles [22,23]. How-

ever, most of these works aimed to charac-

terize the current state. As an example, there 

is a CAD (computer aided dia gnostic) sys-

tem [24] capable of diff erentiating between 

symptomatic and asymptomatic plaques 

with nearly perfect AUC  =  0.956 (area under 

the ROC curve), with some manual steps. 

In that case, however, symptomatic plaque 

means that the patient is currently expe-

riencing stroke, transient ischemic attack 

(TIA), or amaurosis fugax (AF, transient loss of 

vision). This is very diff erent from the predic-

tion task we are solving, which aims to pre-

dict future state, in order to be able to take 

preventive measures in time to avoid serious 

complications such as a stroke.

The gold standard in carotid plaque imag-

ing is now MRI [3], with ultrasound providing 

much less information. A number of image 

features seem to be statistically relevant for 

distinguishing symptomatic plaques [9] but 

much less so for the prediction [6]. Contrast 

ultrasound was found not to be useful to 

identify vulnerable plaques in asymptomatic 

patients [11], which gives even less hope to 

non-contrast ultrasound.

Histology classifi cation after endarterec-

tomy was found to correlate with plaque 

being symptomatic [2]. There were therefore 

attempts to correlate the ultrasound image 

features with information from histology. 

However, the reported AUC  =  0.68 (95% 

confi dence interval 0.59– 0.78) [7] is not sig-

nifi cantly better than ours (0.609).

It can therefore be expected that predict-

ing future plaque growth from ultrasound is 

diffi  cult. Our achieved performance indica-

tors on this task are modest but appear to 

be comparable to previously reported re-

sults. For example, our AUC  =  0.609 (Tab. 2) 

is almost identical to AUC  =  0.604 in [12]. 

Our odds ratio OR  =  2.14 is very much 

comparable to the highest reported OR  

=  2.328 (for ulcerated surface, confi dence 

interval 1.42– 3.82) in [6] and higher than all 
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