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Bariéry nervového systému za fyziologických 
a patologických stavů

Barriers of Nervous System under 
Physiological and Pathological Conditions

Souhrn 
Centrální a periferní nervový systém jsou odděleny od krevního řečiště bariérami, které brání 
volnému přechodu ve vodě rozpustných molekul prostřednictvím těsných spojů, jež propojují 
endoteliální buňky a epiteliální buňky plexus chorioideus. Tyto bariéry též hrají roli v influxu 
esenciálních molekul a odstraňování xenobio  tik. V posledních letech jsou objasňovány roz-
díly a společné rysy jednotlivých bariérových systémů. Jejich poruchy hrají klíčovou roli v celé 
řadě chorob nervového systému. Článek objasňuje strukturu a funkci bariérových systémů za 
fyziologických a patologických okolností.

Abstract
Central and peripheral nervous systems are separated from the bloodstream by barrier struc-
tures that prevent free migration of water-soluble molecules through the tight junctions of 
the choroid plexus endothelial and epithelial cells. These barriers also play a role in the influx 
of essential molecules and elimination of xenobiotics. In recent years, differences and com-
mon features of the various barrier systems are being explored. Their disorders play a key 
role in a number of nervous system diseases. The present paper describes the structure and 
function of barrier systems under physiological and pathological conditions.
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Úvod
Centrální i periferní nervový systém (CNS, 
PNS) je extrémně vulnerabilní vůči noxám 
zevního i vnitřního prostředí. Nepřekva-
puje, že se vyvinuly specializované struk-
tury izolující neurony od krevního řečiště 
a likvoru. Bariéry CNS a PNS chrání ner-
vovou tkáň před toxickými a patogenními 
látkami, regulují iontovou rovnováhu, fa-
cilitují nutriční transport a blokují poten-
ciálně škodlivé molekuly. Buněčné bariéry 

reprezentují hranici mezi kapilárním cév-
ním řečištěm a extracelulární matrix neu-
ronů a gliových buněk. Lze diferencovat 
hematoencefalickou bariéru (HEB), hema-
tolikvorovou bariéru (HLB), hematomíšní 
bariéru (HMB) a hematoneurální bariéru 
(HNB) [1]. 

Je zřejmé, že poškození těchto bariér 
hraje klíčovou roli v rozvoji celé řady one-
mocnění CNS a PNS. Jde zejména o cévní 
onemocnění mozku, traumata, zánět-

livé a autoimunitní onemocnění, epilep-
sie, neurodegenerativní choroby a poly-
neuropatie. V poslední době byly popsány 
nové poznatky týkající se funkce bariéro-
vých systémů na buněčné a molekulární 
úrovni.

Struktura a funkce 
hematoencefalické bariéry
V roce 1885 publikoval Paul Ehrlich zjiš-
tění, že různé, ve vodě rozpustné barvy 
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aplikované do krevního oběhu, nabarvily 
všechny orgány kromě mozku a míchy. 
Předpokládal, že CNS má nižší afinitu 
k těmto barvivům. O tři roky později Biedl 
a Kraus demonstrovali, že žlučové kyse-
liny, které v experimentu při přímé aplikaci 
do mozku vyvolávají epileptické záchvaty 
a kóma, nebyly toxické, pokud byly apli-
kovány do krve. V roce 1967 Reese a Kar-
novsky pomocí elektronové mikroskopie 
prokázali při pokusech s křenovou pe-
roxidázou, že existují mezibuněčné těsné 
spoje (Tight Junction, TJ), které jsou lokali-
zovány na úrovni cévního endotelu [2].

HEB je tvořena komplexním systémem 
skládajícím se z vysoce specializovaných 
mozkových mikrovaskulárních endote-
liálních buněk (MEB) a bazální membrány 
obsahující velké množství pericytů. Na ba-
zální membránu, jež je tvořena kolage-
nem, lamininem, heparinem a sulfát pro-
teoglykanem, nasedají vlákna hladkého 
svalstva [3]. Kromě vrstvy endoteliálních 
buněk se na HEB podílí zakončení astro-
cytů. Astrocyty zprostředkují kontakt mezi 
MEB a nervovými synapsemi. Celý tento 
komplex tvoří neurovaskulární jednotku 
(obr. 1) [4]. Perivaskulární makrofágy jsou 
odpovědné za imunitní dohled [5].

V ně kte rých oblastech mozku, tzv. cir-
kumventrikulárních orgánech, se HEB ne-

vyskytuje. Jsou charakteristické svou malou 
velikostí, vysokou propustností, perforací 
kapilár a výskytem specializovaných epen-
dymálních buněk, tzv. tanycitů, z nichž ně-
kte ré jsou vybaveny chemoreceptory pře-
dávajícími podněty z krve do CNS. Patří 
sem area postrema, eminentia mediana se 
sousedící neurohypofýzou, subkomisurální 
a subfornikální orgán a lamina terminalis 
(resp. její organum vasculosum) [6].

MEB se liší od jiných endoteliálních 
buněk malým množstvím fenestrací, tvor-
bou TJ, omezením pasivní difuze mezi 
buňkami, minimální endocytózou, exis-
tencí specifických transportních systémů 
a zvýšenou aktivitou enzymů, které meta-
bolizují xenobio  tika (cizorodé látky, např. 
léky, toxiny apod.) [7– 9].

Důležitá složka mozkových kapilár a po-
stkapilárních venul jsou pericyty. Poměr pe-
ricytů k endoteliálním buňkám je v mozku 
a sítnici 1 : 1, zatímco v plicích 1 : 10, což 
naznačuje jejich důležitou roli v bariéro-
vých systémech. Regulují angiogenezi, for-
maci HEB v průběhu embryogeneze, cévní 
stabilitu, regulaci kapilárního průtoku krve 
a eliminaci toxických buněčných produktů. 
Jejich nedostatek zvyšuje propustnost HEB 
pro řadu stopových látek [10,11].

Astrocyty patří mezi nejdůležitější gliové 
buňky CNS, které kromě jiného ovlivňují 

mozkovou mikrocirkulaci v závislosti na 
neuronální aktivitě a zpětně regulují ak-
tivitu neuronální sítě [12,13]. Astrocyty 
ovlivňují junkční a transportní vlastnosti 
HEB, ale není jasné, zda jsou tyto pochody 
pod neuronální kontrolou [14]. Indukční 
vlivy astrocytů se podílejí na diferenciaci 
a funkci endotelu HEB [15]. 

Akvaporin-4 (AQP4) je v mozku a míše 
jednou z nejrozšířenějších molekul. 
Vyskytuje se zejména v membránách as-
trocytů v HEB a HLB. AQP4 je zapojen 
v řadě patofyziologických procesů, jeho 
fyziologická role není zcela jasná. Ne-
dávné poznatky svědčí o jeho vlivu na re-
gulaci objemu extracelulárních prostor, 
cirkulaci likvoru a resorpci mezibuněčných 
tekutin. Podílí se na zánětu, buněčné mig-
raci a dalších buněčných funkcích. 

Řada imunitních buněk je v interakci 
s HEB. Nejdůležitější je vliv perivaskulár-
ních makrofágů, jejichž úloha je kromě 
imunitního dohledu i fagocytóza buněč-
ných fragmentů [17]. V perivaskulárních 
regionech se vyskytují žírné buňky, jejichž 
role nebyla plně objasněna [18]. V paren-
chymu CNS je hojně zastoupena mikro-
glie pocházející z monocytární buněčné 
linie. Ta vstupuje do CNS během embryo-
geneze a podílí se na neuronálním zrání 
a přirozené imunitní odpovědi. Může se 

Obr. 1. Struktura hematoencefalické bariéry.

JAM – junkční  adhezní molekuly, PECAM – endoteliální adhezní molekuly, ZO – zona occludens.
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chovat jako antigen prezentující buňka 
v rámci přirozené i adaptivní imunitní 
odpovědi [19]. 

Interendoteliální TJ v CNS tvoří složitý 
komplex transmebránových a cytoplaz-
matických proteinů ukotvených k cytos-
keletu aktinem (obr. 1). Bylo referováno 
o celé řadě proteinů, které se zde na-
cházejí. Jedná se o okludin, klaudin-3, 
klaudin-5, klaudin-12, zona occludens 
(ZO)- 1, ZO-2 a junkční adhezivní molekuly 
(JAM)- A [20– 25]. Klaudin-5 je nezbytný 
pro udržování bariérových vlastností HEB 
za fyziologických podmínek, úroveň jeho 
exprese se zhoršuje při ně kte rých patolo-
gických stavech. Klaudin-3 je zvýšeně ex-
primován při zrání HEB [26].

MEB exprimují různé influxní a exfluxní 
transportní systémy, které ovlivňují nejen 
poskytování živin, ale s výjimkou léků 
i prostupnost excesivních neurotoxických 
látek, např. neurotransmiterů a jejich me-
tabolitů (obr. 2). Mezi nejvýznamnější ex-
fluxní transportéry patří P-glykoprotein 
(P-gp), „multidrug resistance associated 
protein“ (MRP) a adenozin trifosfát (ATP), 
přičemž se u všech předpokládá, že zabra-
ňují vstupu xenobio  tik do CNS [27– 29]. 
MEB také podporují influx různých nu-
tričních faktorů, které využívají specifické 
transportní systémy, jako jsou glukózový 
transpotér 1 (glu1), transportér monokar-
boxylové kyseliny 1 (MCT1) a přenašeč 
kreatininu [30– 32]. Přestup látek z krve 
do mozku se uskutečňuje na podkladě 
jejich rozpustnosti v tucích nebo pomocí 
přenašečových systémů. Snadno prostu-
puje voda a látky dobře rozpustné v li-
pidech, např. etanol, nikotin, plyny (O2

, 
CO

2
, N

2
O). Nezbytné hydrofilní látky jsou 

do mozku transportovány pomocí speci-
fických transportních systémů (glukóza, 
neutrální aminokyseliny). Vezikulární 
transport je velmi omezený. Neporu-
šená hematoencefalická bariéra prakticky 
znemožňuje prostup makromolekul do 
mozkové tkáně. Průniku těchto látek do 
mozku zabraňuje také enzymatická bari-
éra, na níž se podílejí enzymové systémy, 
lokalizované ve stěnách mozkových cév, 
např. monoaminooxydázy (enzymy de-
gradující monoaminy) a aminopeptidázy 
(enzymy rozkládající enkefaliny).

Hematoencefalická bariéra 
za patologických stavů
Poškození HEB je patrné u různých neuro-
logických afekcí, ať již traumatických, is-

chemických, zánětlivých či degenerativ-
ních. Porucha bariérových systémů může 
být prospěšná (umožňuje vstup imuno-
kompetentních buněk do CNS a jejich 
podíl na reparativním zánětu), nebo po-
škozující. Protrahovaná porucha HEB vede 
k vazogennímu edému se zvýšeným influ-
xem vody a proteinů do CNS, což může 
způsobit zvýšení nitrolebního tlaku s fa-
tálními důsledky. Na buněčné úrovni do-
chází k narušení myelinových obalů, zvý-
šené astrocytární reaktivitě a to má za 
následek neuronální dysfunkci či ireverzi-
bilní axonální ztrátu [33].

Dysfunkce HEB během patologických 
stavů je podmíněna narušením TJ, zvýše-
ním transcytózy, změnou transportních 
systémů a zvýšenou leukocytární infiltrací. 
Na poruše HEB se účastní řada molekul –  
vazoaktivní bílkoviny (Vascular Endothelial 
cell Growth Factor, VEGF, Reactive Oxy-
gen Species, ROS) zánětlivé cytokiny (in-
terleukin 1- IL-1, IL-6, tumor nekrotizující 
faktor alfa,  TNF-alfa), matrix metaloprotei-
názy a jejich inhibitory (MMP-9, MMP-2, 
MMP-7) a leukocytární adhezní molekuly 
(P-selektin, E-selektin, Intercellular ad-
hesion molecule 1 –  Icam1, Vascular cell 
adhesion molecule 1 –  Vcam1) [34]. Ne-
dávné studie ukazují důležitou roli chemo-
kinů a jejich receptorů (CXCL12, CCL19, 
CCL20 a CCL21) v udržování homeosta-
tických funkcí. Zatímco endoteliální ex-
prese těchto chemokinů reguluje průnik 
leukocytů do CNS, kde vykonávají imu-
nitní kontrolu, nová data svědčí o tom, že 
CXCL12 je též zapojen do neurogeneze 
a přežívání neuronů [35]. Přehled onemoc-
nění, u kterých se v patogenezi uplatňuje 
porucha HEB, je uveden v tab. 1.

Roztroušení skleróza 
Roztroušená skleróza (RS) je autoimunitní 
onemocnění s prvky neurodegenerace. 
Relaps remitující forma RS je charakterizo-
vána poruchou HEB s masivní perivaskulární 
infiltrací makrofágy a neutrofily [36]. V imu-
nopatogenezi RS hrají důležitou roli MMP.

U relaps remitující formy se MMP po-
dílejí na porušení HEB, perivaskulární in-
filtraci lymfocyty a zesílení chemotak-
tického gradientu. MMP se účastní i na 
ložiskovém poškození myelinu vedoucím 
ke vzniku typických demyelinizačních lézí 
a na přerušení axonů. Významné je i jejich 
působení neurotoxické [37,38].

Porucha HEB je dobře patrná na mag-
netické rezonanci mozku (MR), kdy u lon-
gitudinálních studií, ale i v klinické praxi 
po aplikaci gadolinia dochází u čers-
tvých aktivních lézí k akumulaci kontrastní 
látky, zatímco u lézí starších tomu tak 
není [39– 41]. Mnohé důkazy svědčí pro 
to, že i počáteční fáze progresivní RS jsou 
zprostředkovány autoimunitním záně-
tem imunokompetentními buňkami usíd-
lenými za HEB [42]. Zajímavé jsou studie, 
které prokazují redukci proteinů asocio-
vaných s TJ v místech normálně vypadající 
bílé hmoty (Normal Appearing White Ma-
tter, NAWM, To podporuje předpoklad, 
že dysfunkce HEB se vykytuje i v místech, 
kde se nevyskytují aktivní léze [43,44].

Praktický důsledek ovlivnění role HEB 
u RS je zavedení monoklonální protilátky 
natalizumabu do léčebné praxe. V sou-
časné době je to nejefektivnější léčba u vy-
soce aktivní RS. Natalizumab je antago-
nista 4- integrinu. Jeho hlavní nežádoucí 
účinek je možnost reaktivace JCV (John 
Cunningham viru) u predisponovaných 

Obr. 2. Transportní systémy hematoencefalické bariéry.
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jedinců. Tento vir je odpovědný za rozvoj 
progresivní multifokální leukoencefalopa-
tie (PML). Blokádou HEB je totiž výrazně 
omezena možnost rozpoznání JCV T lym-
focyty, jež prostupují HEB a dohlížejí na 
potenciální možnost výskytu infekce [45]. 

Vysoké dávky metylprednizolonu redu-
kují hladiny MMP-9 v likvoru blokádou 

aktivátoru proteinu-1 pro MMP-9 gen. 
Tím dochází k uzavření HEB, což se vyu-
žívá k léčbě akutního relapsu [46].

Neuromyelitis optica
Porucha HEB je daleko výraznější u neuro-
myelitis optica (NMO) a může napomáhat 
v diferenciální dia gnostice oproti RS [47]. 

V imunopatogenezi NMO hrají důleži-
tou roli protilátky proti AQP4, které jsou 
snadno detekovatelné v séru. Sérum pa-
cientů s NMO má selektivní patologický 
vliv na buněčné membrány astrocytů ex-
primující AQP4, zejména v oblasti Ran-
vierových zářezů s možnou inicializací 
demyelinizace [48].

Traumatické postižení CNS
Pro poruchy HEB při mozkových traumatech 
je typický rozvoj mozkového edému, zánět 
a smrt neuronů. Aktivuje se hypoxii indu-
kující faktor-1 (HIF-1), AQ-4 a MMP-9, 
které se podílejí na rozvoji mozkového 
edému a zvýšené permeabilitě HEB. Na po-
ruše HEB se v experimentu podílí i oxida-
tivní stres a aktivace mikroglie [49].

Mozkové ischemie
Cerebrální ischemie vede k dvoufázo-
vému poškození HEB [50]. Její počáteční 
otevření je reverzibilní, zprostředkované 
MMP-2. V podmínkách akutní hypoxie 
dochází k akumulaci HIF-1, který má 
neuroprotektivní efekt. Stimuluje endote-
liální růstový faktor a transformující růs-
tový faktor-, jež jsou důležité v angioge-
nezi a neurogenezi [51].

K dalšímu otevření HEB dochází 
24– 48 hod po reperfuzi v závislosti na 
délce ischemie. Zánětlivé cytokiny indu-
kují tvorbu MMP-3 a MMP-9 a také cyk-
looxygenázy 2 (COX-2), přičemž nastává 
větší destrukce HEB. Důsledkem toho je 
vstup neutrofilů a monocytů, které jsou 
zdrojem MMP a toxických krevních pro-
duktů. Oxidativní stres poškozuje endote-
liální buňky HEB a přispívá k vazogennímu 
edému [52]. MMP-7 ovlivňuje stabilitu 
aterorosklerotických plátů prostřednic-
tvím makrofágů [53].

Epilepsie
Patologické změny HEB s extravazáty al-
buminu v mozkovém parenchymu byly 
pozorovány u akutních epileptických zá-
chvatů [54]. Ačkoliv není zcela jasné, zda 
dysfunkce HEB je příčina nebo následek 
této poruchy, je zřejmé, že dochází k ion-
tové dysbalanci a změnám energetického 
metabolizmu. Nedostatek glukózového 
transportéru 1 (GLUT1) vede k rozvoji epi-
leptického syndromu, který může být po-
zitivně ovlivněn ketogenní dietou [55].

Epileptický syndrom je často prová-
zen zánětlivými změnami CNS. Dochází 
ke zvýšené expresi zánětlivých mediá-

Tab. 1. Porucha hematoencefalické bariéry u ně kte rých neurologických 
onemocnění.

Onemocnění Důkazy poruchy hematoencefalické bariéry

roztroušená 
skleróza

•  perivaskulární buněčné infiltráty u akutních lézí
•  poškození TJ v okolí lézí, ale i u NAWM
•  snížená produkce lamininu v bazální membráně
•  selektivní poškození claudinu- 3 u EAE
•  role MMP- 9, MMP- 2 a MMP- 7
•  gadolinium enhancující léze –  natalizumab –  monoklonální pro-

tilátka proti 4- integrinu, který se váže k Vcam1 omezuje průnik 
T lymfocytů skrz HEB

neuromyelitis 
optica

•  role AQP4

traumata CNS
•  aktivace HIF- 1, AQP4 a MMP- 9
•  aktivace mikroglie

cévní mozková 
příhoda

•  zobrazovací metody detekují edém v okolí mozkového infarktu
•  zvýšení množství makrofágů a neutrofilů v CNS
•  snížená regulace LAM (E- selektin, P selektin, Icam1) 

epilepsie

•  u temporální epilepsie a někdy i u akutních záchvatů je zvýšený 
albumin v mozkovém parenchymu

•    záchvaty spojené s otevřením HEB (CMP, trauma, infekce)
•  osmotické otevření HEB vede ke zvýšené záchvatovité pohotovosti
•  GLUT1 deficience je asociována s epileptickým syndromem
•  zvýšená exprese P- gp je asociována s farmakorezistentní epilepsií

Alzheimerova 
nemoc

•  výskyt vaskulárních plak v arteriích a okolních kapilárách
•  intracerebrální tepny mají ztenčenou hladkou svalovou vrstvu
•  snížený transport glukózy, snížená regulace GLUT1, alterace hla-

diny agrinu, snížená regulace exprese AQP4
•  akumulace beta amyloidu
•  kapiláry jeví známky endoteliální degenerace a ztluštění bazální 

membrány
•  koncentrace albuminu v likvoru koreluje s progresí nemoci

amyotrofická
laterální 
skleróza

•  infiltrace imunitních buněk v míše
•  zvýšení sérových proteinů post mortem v míše a likvoru

Parkinsonova 
nemoc

•  polymorfizmus P- gp zvyšuje riziko onemocnění při expozici 
pesticidům

•  PET prokazuje sníženou aktivitu P- gp v mozku
•  zvýšená angiogeneze v mozku
•  důležitá role LAT- 1 pro prostup L- dopy skrz HEB

AQP4 – akvaporin-4, GLUT1 – glukózový trasportér 1, HEB – hematoencefalická bariéra,
Icam1 – Intercellular adhesion molecule 1, 1 LAM – Leukocye Adhesion Molekule
1, LAT-1 – Large neutral Amino acid Transporter, L-dopa – levodopa, NAWM – Normal
Appearing White Matter, PET – pozitronová emisní tomografie, P-gp – P glykoprotein,
TJ – Tight Junction.
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torů, např. interleukinu-1 (IL-1), tumor 
nekrotizujícího faktoru alfa (TNF), cyk-
looxygenázy 2 (COX-2) a chemokinu 
CXCL 10 (CXCL10), které mohou v po-
stparoxyzmálním období poškozo-
vat mozkovou tkáň a zvyšovat záchva-
tovou pohotovost [56]. HEB je kritické 
místo v léčbě epilepsie. Zvýšená exprese 
P-gp je asociována s farmakorezistentní 
epilepsií [57]. 

Alzheimerova nemoc
Zvýšená propustnost HEB u Alzheimerovy 
nemoci (AD) úzce koreluje s progresí ne-
moci [58]. Intracerebrální arterie a kapi-
láry mají ztenčenou vrstvu hladkých svalů, 
obsahují amyloidní plaky, dochází k de-
generaci endotelu se ztluštěním bazální 
membrány [59]. Otevření HEB na základě 
hypoxických inzultů vede k akumulaci 
plazmatického beta amyloidu v mozko-
vém parenchymu nebo vaskulárním endo-
telu. Důležitou roli v buněčném transportu 
beta amyloidu hraje nízkodenzitní lipopro-
teinu příbuzný protein 1 (LRP1) [60].

Amyotrofická laterální skleróza
U amyotrofické laterální sklerózy (ALS) 
byly nalezeny zvýšené hladiny albuminu, 
IgG a lymfocytární infiltráty indikující po-
škození HEB. U experimentálních myších 
modelů ALS při využití SOD1 (superoxid 
dismutáza 1) mutací docházelo k re-
dukci endoteliálního GLUT1, klaudinu-5, 
ZO1 a okludinu. Patologické změny astro-
cytárních zakončení byly pozorovány již 
v časných fázích onemocnění. Tyto nálezy 
by mohly mít zásadní význam pro vývoj 
účinných terapeutických postupů [61]. 

Ně kte ré studie prokázaly, že degene-
raci motoneuronu v předních rozích míš-
ních předchází poškození neurovaskulární 
jednotky, což by mohlo mít též terapeu-
tický význam [62].

Parkinsonova nemoc
Polymorfizmus MDR1 genu (Multidrug 
Resistence 1gen) kódujícího P-gp je aso-
ciován s narůstajícím rizikem rozvoje Par-
kinsonovy nemoci (PD) u jedinců expono-
vaných pesticidům pronikajícím do CNS 
narušenou HEB [63]. Recentní studie pro-
kázala, že MMP-3 se podílí na ztrátě do-
paminergních neuronů nigrostriatální 
dráhy u 1- metyl-4- fenyl-1,2,3,6- tetrahyd-
ropyridin (MPTP) myšího modelu PD u po-
škozené HEB infitrované periferijními imu-
nitními buňkami [64].

Hematolikvorová bariéra
Bohatě vaskularizovaný chorioideální ple-
xus (CHP) je poměrně netěsný. Existuje 
zde velmi rychlý krevní průtok (10krát 
vyšší než v mozku) a vysoký obrat teku-
tin (cca 400 000 μL/ den) s obsahem sto-
pových prvků, peptidů a hormonů [65]. 
Místo fenestrovaného endotelu funkci 
HEB přebírá vrstva epiteliálních buněk vy-
tvářejících TJ. Jeho apikální ventrikulární 
membrána tvoří HLB [66]. Klaudin-1, - 2, 
a - 3 je lokalizován v oblasti epiteliálních 
spojů a selektivně exprimován v CHP. Zde 
jsou též exprimovány jiné, s TJ asociované 
proteiny, např. okludin, ZO-1 a ZO-2 [67]. 
Klaudin-11 se vyskytuje výhradně v CHP 
a je součástí paralelních TJ [68].

CHP není jen jednoduchá difuzní ba-
riéra, ale zásobuje CNS nutričními lát-
kami, např. vitaminy a glukózou. Podílí se 
ale i na eliminaci xenobio  tik a metabolic-
kých produktů. Transcelulární epiteliální 
aktivní transport a sekrece jsou energe-
ticky náročné procesy, na kterých se podílí 
mitochondrie, endoplazmatické retiku-
lum a Golgiho aparát [65]. Vyšetření lik-
voru představuje unikátní možnost získání 
informací o fyziologických i patologických 
procesech CNS. Intratékální aplikace me-
dikamentů představuje jednu z možností, 
jak „obejít“ HEB u léčiv, které by touto 
bariérou obtížně pronikaly. HLB se podílí 
na homeostáze CNS společně s HEB [69].

Hematomíšní bariéra
Hematomíšní bariéra (HMB) je funkční 
ekvivalent HEB ve smyslu existence spe-
cializovaného mikroprostředí pro bu-
něčné složky míchy. Nedávno získané po-
znatky svědčí o tom, že mezi HEB a HMB 
existují funkční rozdíly. HMB je prostupná 
pro cytokiny mnohem více než HEB [70]. 
V in vitro studii Ge a Pachter ukázali, že 
v kulturách MEB izolovaných z myší míchy 
je nižší exprese ZO-1 a okludinu v porov-
nání s kulturami mozkových MEB [71].

Poruchy HMB jsou zřejmé u celé řady 
onemocnění, např. u neuromyelitis op-
tica, ALS, radiačního poškození míchy, 
míšní ischemie a traumat. Ve všech pří-
padech, stejně jako u poruch HEB, 
jsou terapeuticky účinné vysoké dávky 
metylprednizolonu.

Hematoneurální bariéra
Poruchy hematoneurální bariéry (HNB) 
jsou iniciálně přítomny u mnoha au-
toimunitních onemocnění PNS. Jde např. 

o Guillainův-Barrého syndrom, chronic-
kou zánětlivou demyelinizační polyradi-
kuloneuritidu (CIDP) a paraproteinemické 
polyneuropatie [72].

HNB zahrnuje endoneurální mikrocir-
kulaci a vnitřní vrstvu perineuria. Struktu-
rálním podkladem HNB jsou TJ mezi sou-
sedními MEB periferních nervů (PnMEB) 
a mezi perineurálními buňkami [73]. Látky 
pocházející z krevního řečiště se mohou 
dostat do endoneurálního extracelulár-
ního prostoru buď přes endoneurální vas-
kulární endotel, nebo perineurium. Řada 
studií ukazuje, že perineurální permeabi-
lita je mnohem nižší než prostupnost en-
doneurárálních vlásečnic [73,74]. PnMEB 
tvoří v perineuriu většinu vlásečnic, a proto 
je lze považovat za skutečné rozhraní mezi 
krví a periferními nervy. Ačkoliv vlastnosti 
HNB jsou podobné jako u HEB, dosud jsou 
omezené poznatky o molekulárních me-
chanizmech podílejících se na stavbě HNB. 
Na izolovaných tkáňových kulturách kry-
sích PnMEB je patrné, že dochází k expresi 
TJ molekul, jako okludin, klaudin-5, klau-
din-12, ZO-1, ZO-2 a junkčních adhez-
ních molekul (JAM) 1 na úrovni mRNA. 
Na mezibuněčných spojích byl též de-
tekován klaudin-5. Krysí PnMEB též ex-
primovaly influxní transportéry (GLUT-1) 
a ně kte ré efluxní transportéry [75]. Endo-
teliální buňky formující HNB exprimují po-
dobné TJ a transportní proteiny, jako je 
tomu u HEB k ochraně nervových vláken 
před toxickými a patogenními vlivy v krvi.  
Dodávají esenciální látky pomocí influx-
ních trasportérů.

Na rozdíl od HEB součástí HNB ne-
jsou astrocyty. Jejich roli vykonávají nej-
spíše pericyty periferních nervů, což jsou 
jediné buňky podílející se kromě PnMEB 
na stavbě endoneurálních vlásečnic. Solu-
bilní faktory, secernované z pericitární bu-
něčné linie, derivované z lidského seda-
cího nervu, snižují clearance inulinu přes 
PnMEB. Buněčné linie pericytů lidských 
periferních nervů exprimují řadu neuro-
trofických faktorů, jako nervový růstový 
faktor (NGF), mozkem derivovaný neuro-
trofní faktor (BDNF) a glií derivovaný neu-
rotrofní faktor (GDNF) [76]. Tyto látky 
mohou bránit axonálnímu poškození 
a podílet se na axonální regeneraci PNS. 
Lze soudit, že mají dosud nedoceněný te-
rapeutický potenciál [77].

Snížená regulace klaudinu-1 a dislo-
kace ZO-1, patrná u CIDP, může indikovat 
poruchu HNB [78]. V imunopatogenezi 
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CIDP a neuropatií asociovaných s vasku-
litidou hrají rovněž důležitou roli MMP. 
MMP-9 zprostředkuje zánětlivou buněč-
nou infiltraci T lymfocyty a makrofágy [79].

 Závěr
 Ačkoliv existují mezi bariérovými sys-
témy odlišnosti, mají mnohé společného. 
Všechny se podílejí na udržování ho-
meostázy nervového systému. Specifické 
transportní systémy participují na příjmu 
esenciálních látek, jiné realizují eliminaci 
metabolitů a toxických zplodin. Společným 
rysem je výskyt TJ a jiných molekul, např. 
ZO. Významný podíl na funkci bariér mají 
endoteliální, eventuálně epiteliální buňky, 
pericyty a zejména výběžky astrocytů.

 Pokračující výzkum v oblasti modifi-
kace bariérových systémů přináší nové te-
rapeutické možnosti, jak je zřejmé na pří-
kladu RS. V budoucnu lze očekávat vývoj 
dalších léků, zejména v oblasti neurode-
generativních chorob, cévních, trauma-
tických, nádorových onemocnění a au-
toimunitních polyneuropatií.
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