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Možnosti regulace neuroimunitních 
a neuroendokrinních dějů pomocí fyzioterapie 

Possibilities of regulation of neuroimmune  
and neuroendocrine processes using 
physiotherapy

Souhrn
Článek přináší přehled o potenciálních možnostech fyzioterapie zasahovat do neuroendokrino-
imunitního systému u nemocných s RS. Popisuje principy, které jsou ve fyzioterapii využívány tak, 
aby nastartovaly adaptační procesy imunitního a endokrinního systému.

Abstract
The article provides an overview of the potential possibilities of physiotherapy to interfere with 
the neuroendocrineimmune system in patients with MS. Article describes the principles used in 
physiotherapy to start adaptation processes of the immune and endocrine system.
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Úvod
Současný výzkum se zabývá rozvojem imuno- 
aktivních terapeutických přístupů v  léčbě 
RS [1]. První pilotní studie ukazují, že jednou 
z  možností aktivního ovlivňování neuroen-
dokrino-imunitního systému je fyziotera-
pie. Zátěž/ cvičení [2– 4] a facilitační fyziotera-
pie [5] ovlivňují adaptační procesy imunitního 
a endokrinního systému u nemocných s RS. 
V  tomto článku se věnujeme fyziologickým 

principům, které se ve fyzioterapii mohou 
k ovlivnění neuroendokrino-imunitního sys-
tému využít. Jde zatím o nespecifické půso-
bení, které by však mohlo významně zefektiv-
nit léčbu nemocných s RS.

Imunitní systém a jeho odpověď 
na pohybovou zátěž
Pohybová aktivita v  závislosti na inten-
zitě, trvání a pravidelnosti ovlivňuje přiroze-

nou imunitu, funkci T lymfocytů a v malém 
množství i B lymfocytů a jejich zvýšenou se-
kreci do periferní krve. Během tělesné akti-
vity se mění i odpověď cytokinů prostřednic-
tvím změn hemodynamiky a změn sekrece 
endokrinních hormonů  [6]. Během cvičení 
vzrůstá počet imunitních buněk v  perifer-
ním krevním oběhu. Dochází také k vyplavo-
vání natural killers (NK) buněk. Koncentrace 
neutrofilů se během pohybové aktivity, ale 

Článek byl podpořen granty 260388/SVV/2017 a Q37.

proLékaře.cz | 5.2.2026



MOŽNOSTI REGULACE NEUROIMUNITNÍCH A NEUROENDOKRIN NÍCH DĚJŮ POMOCÍ FYZIOTERAPIE 

Cesk Slov Ne urol N 2018; 81/ 114(4): 410– 413 411

i po jejím ukončení zvyšuje. Současně do-

chází ke změnám ve vzájemném poměru 

T buněk –  snižuje se počet Th lymfocytů 

(pomocné T lymfocyty) vůči cytotoxickým 

T lymfocytům (Tc) [6,7]. Po ukončení cvičení 

se ně kte ré složky imunitního systému, např. 

počty lymfocytů, NK buněk a lymphokine 

activated kil ler (LAK) buněk, dle intenzity 

a trvání zátěže až na 6 h snižují. U neutrofi lů, 

které tvoří až 50– 70 % z cirkulujících bílých 

krvinek, naopak přetrvává neutrofi lie kom-

penzující snížení ostatních komponent imu-

nitního systému [8].

Endokrin ní systém 
v reakci na pohybovou zátěž
Pohybovou aktivitou je fyziologicky aktivo-

vána osa hypotalamus-hypofýza-kůra nad-

ledvin (HPA), což vede ke změnám hladiny 

glukokortikoidů. Při náhlé intenzivní zá-

těži jsou glukokortikoidy schopny imunitní 

funkce zvyšovat, zatímco při pravidelné zá-

těži submaximální intenzity inhibovat –  po-

tlačují produkci prozánětlivých cytokinů 

a podporují produkci protizánětlivých [9]. 

Během pohybové aktivity jsou aktivací sym-

patického nervového systému uvolňovány 

katecholaminy, zejména adrenalin a nor-

adrenalin. Jejich vyplavení indukuje změny 

β-adrenergních receptorů [6,9,10].

Experimenty na zvířecích modelech 

prokázaly sníženou funkci osy HPA u krys 

s RS [11]. V humán ní medicíně se v závislosti 

na typu a stadiu RS vyskytuje jak snížená, tak 

zvýšená funkce osy HPA. U relaps-remitentní 

formy RS byly zjištěny nižší hladiny glukokor-

tikoidů a snížená senzitivita glukokortikoid-

ních receptorů [9]. Dále byla u nemocných 

s RS prokázána signifi kantně vyšší klidová 

hladina noradrenalinu. Odpověď adrena-

linu a noradrenalinu na psychický stres se 

však oproti zdravým kontrolám neliší [12]. 

Reakce osy HPA na pravidelný trénink aerob-

ního charakteru (8 týdnů, 2× týdně na 75 % 

maxima dosažené hodnoty ve wat tech) 

byla u stabilizovaných pa cientů s RS s niž-

ším neurologickým defi citem podobná jako 

u zdravých dobrovolníků [2]. Koncentrace 

adrenokortikotropního hormonu, kortizolu, 

adrenalinu a noradrenalinu v klidu a v od-

povědi na 30min zátěžový test se po pravi-

delném tréninku (60 % maximální spotřeba 

kyslíku [VO
2
 max]) u nemocných s RS nezmě-

nily [3]. Pouze u nemocných s RS bez pravi-

delného tréninku se při zátěži ukázal trend 

k nižší cytokinové odpovědi, který není zcela 

typický pro prozánětlivou reakci (tumor nek-

rotizující faktor α a interleukin 10) [2].

Imunitní a endokrin ní reakce 
ovlivňující plasticitu mozku
Pravidelná aerobní zátěž [11,13– 16] a fyzio-

terapie na neurofyziologickém podkladě [5] 

ovlivňují imunitní a endokrin ní reakce, a tím 

i plasticitu mozku. 

Podle dostupných poznatků pravidelná fy-

zická aktivita iniciuje molekulární a buněčné 

kaskády, které podporují a udržují plasticitu 

mozku. Pohybová aktivita indukuje expresi 

genů, které kódují brain-derived neurotro-

phic factor (BDNF) [13]. Tento faktor podpo-

ruje přežití a růst mnoha podtypů neuronů 

vč. glutamatergních neuronů [17]. Cvičení 

navíc podporuje vaskularizaci mozku, neu-

rogenezi, funkční změny v neuronových 

strukturách a odolnost neuronů vůči po-

škození [10,13]. Aerobní trénink (8 týdnů, 

2× týdně, intenzita 75 % maxima dosažené 

hodnoty ve wattech) u nemocných s RS vedl 

ke zvýšení hladiny klidové hodnoty BDNF 

i jeho hodnoty po zátěži [3,14] a ke zvýšení 

nerve growth factor (NGF) podobně jako 

u zdravých kontrol. Přechodné zvýšení BDNF 

při jednorázovém středně náročném cvičení 

by mohlo pomáhat neuronální regeneraci 

a plasticitě [14]. Dlouhodobé cvičení střední 

zátěže by mohlo vést k trvale zvýšené hla-

dině neurotrofi ckých látek v séru [14]. 

Pravidelné zatěžování submaximální in-

tenzity vede u RS k podobným reakcím 

imunitního a endokrin ního systému jako 

u zdravé populace a má příznivý vliv na prů-

běh onemocnění. Tyto změny mohou být 

způsobeny imunomodulací při tréninku 

nebo kompenzací negativního vlivu dlou-

hodobé nízké aktivity [2]. 

Neurofyziologické vysvětlení 
efektu facilitační fyzioterapie
Facilitační fyzioterapie ovlivňuje imunitní 

a endokrin ní systém pravděpodobně díky 

propojení mozečku s limbický m systémem 

(via Papezův okruh) [15– 18]. Facilitační fyzio-

terapie využívá různých senzomotorických 

technik (somatosenzorické stimuly –  taktilní, 

sluchové, zrakové podněty) v rozdílných po-

sturálních pozicích, čímž stimuluje moze-

ček, a tím ovlivňuje i další systémy, mezi 

nimi i imunitní. Mimo jiné využívá základní 

mechanizmus učení a paměti –  dlouhodo-

bou potenciaci (long-term potentiation; 

LTP), při které dochází k dlouhodobému ze-

sílení synaptického přenosu mezi dvěma 

neurony jako výsledku jejich současné 

stimulace [19,20]. 

Zesílení přenosu spočívá jednak ve zvý-

šení koncentrace intracelulárního kalcia 

v postsynaptickém neuronu současně se 

zvýšením jeho citlivosti (tj. zvýšením počtu 

postsynaptických receptorů) [21,22]. Pod-

stata LTP spočívá v tom, že krátkodobá vyso-

kofrekvenční stimulace v ně kte ré ze tří hlav-

ních hipokampálních drah vyvolá zvýšení 

synaptické aktivity, které přetrvává po dlou-

hou dobu [23].

 LTP je ve své podstatě přetrvávající synap-

tická aktivita, která může být navozena krát-

kodobou vysokofrekvenční stimulací hipo-

kampálních neuronů. Má časnou a pozdní 

fázi [24].

Časná fáze LTP začíná okamžitě po teta-

nické stimulaci a trvá od 1 do 3 h. Tato fáze 

ke svému průběhu nevyžaduje syntézu pro-

teinů a je navozena jednorázovou vysokofre-

kvenční stimulací.

Pozdní fáze LTP naproti tomu vyžaduje 

větší počet vysokofrekvenčních stimulací 

a přetrvává alespoň 24 h, přičemž je po-

třebná aktivace genů. Je blokována inhibi-

tory proteosyntézy, inhibitory RNA syntézy 

a inhibitory proteinkinázy A. Tato pozdní 

fáze může být aktivována cyklickým adeno-

sinmonofosfátem, jedním z druhých poslů, 

kteří stojí i u zrodu signálu aktivujícího geny 

v jádře.

V klidovém stavu je přenos signálu větši-

nou neúspěšný a zdaří se jen ojediněle. Po 

stimulaci v časné fázi LTP je úspěšnost pře-

nosu signálu mnohem větší. Časná fáze LTP 

je důsledkem zvýšení pravděpodobnosti 

uvolnění vezikul, aniž však musí být navýšen 

počet uvolňujících míst.

Při pozdní fázi LTP naopak dochází k ná-

růstu nových, uvolňovacích míst na presy-

naptických zakončeních a zároveň k tvorbě 

nových receptorů v dendritických trnech na 

postsynaptické buňce. To ve svém důsledku 

vede i ke zvýšení počtu synapsí [25].

Během LTP je současně s nervovým sys-

témem aktivován i systém imunitní [26]. 

Ně kte ré molekuly, které se primárně podí-

lejí na imunitních funkcích (např. cytokiny), 

také aktivně modulují synaptické paměťové 

procesy [27].

Navíc ionotropní či metabotropní gluta-

mátové receptory aktivované při terapii jsou 

součástí jak neuronů, tak imunitních buněk, 

čímž může být modulována indukce LTP 

anebo ovlivněna funkčnost lymfocytů [15]. 

Somatosenzorické podněty využívané ve 

fyzioterapii aktivují (a regulují) mimo jiné 

cerebel lum následně via hypothalamus –  

paleocerebel lum a neocerebel lum a lim-

bický systém [19], odtud pak přes osu HPA 

imunitní systém [9]. 
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Úloha dehydroepiandrosteronu 
a jeho sulfátů u autoimunitních 
onemocnění
Výzkumy ukázaly, že dehydroepiandroste-

ron (DHEA) a jeho deriváty hrají význam-

nou roli při rozvoji autoimunitních onemoc-

nění [20]. DHEA je společně s jeho sulfátem 

jedním z nejhojněji zastoupených steroid-

ních hormonů v lidském organizmu. Kromě 

kůry nadledvin je DHEA syntetizován v gliích 

mozku, a proto je společně s jeho metabo-

lity řazen mezi neurosteroidy [28,29]. DHEA 

je důležitý endogen ní neurohormon se širo-

kou škálou bio logických funkcí, z nichž nej-

důležitější v patogenezi RS mohou být ná-

sledující: snižuje zánětlivé procesy, moduluje 

buněčnou imunitu, má neuroprotektivní 

účinky, zlepšuje kognitivní funkce, posiluje 

paměť, chrání před apoptózou a antago-

nizuje účinky oxidačních látek a glukokor-

tikoidů [28] a hraje roli při myelinizaci [30]. 

Snížené hladiny DHEA/ DHEA-sulfátu byly 

pozorovány u ně kte rých neurodegenerativ-

ních neuropsychiatrických poruch [23,24,28], 

rovněž u RS [25,31]. 

Mechanizmus neuroprotektivního účinku 

DHEA je nejčastěji vysvětlován pozitivní 

modulací GABAA a N-metyl-D-aspartáto-

vých (NMDA) receptorů. Za neuroprotektiv-

ními vlastnostmi DHEA mohou ovšem stát 

také jeho metabolity vznikající v mozku [27]. 

Jedná se především o metabolity oxidované 

či hydroxylované v poloze 7, konkrétně 7α-

-hydroxy-DHEA, 7β-hydroxy-DHEA nebo 

7-oxo-DHEA) [32– 34]. Jejich imunoprotek-

tivní, antiglukokortikoidní, antioxidační, an-

tiapoptotické a neuroprotektivní účinky 

mohou značně přispívat k podobným účin-

kům původně přisuzovaným samotnému 

DHEA [23,27,28,35– 39]. 

Jeho neuroporotektivní role již byla do-

kumentována v několika studiích [40– 44]. 

V naší studii [5] jsme předpokládali, že po-

mocí facilitační fyzioterapie ovlivníme hla-

dinu DHEA. Vycházeli jsme z výsledků stu-

die [45,46], ve které došlo ke zvýšení hladiny 

DHEA (z 2,73 na 3,08 μmol/ l; p < 0,04) a sig-

nifi kantnímu snížení hladiny hormonu korti-

zolu (z 804 na 304 nmol/ l; p < 0,00001) u žen 

po operaci štítné žlázy po komplexní lázeň-

ské léčebné rehabilitační péči s fyzioterapií.

Závěr
Fyzioterapie má potenciál zasahovat při-

rozenými podněty do neuroendokrino-

-imunitního systému, a regulovat tak slo-

žité neuroimunitní děje v CNS. K tomu, aby 

tato možnost byla využita cíleně, bude 

potřeba realizovat ještě řadu vědeckých 

studií.
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