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Poruchy cirkadiánního systému u Huntingtonovy 
choroby – implikace pro terapii světlem

Circadian system disturbances in Huntington’s disease – 

implications for light therapy

Souhrn
Huntingtonova choroba (Huntington disease; HD) je autozomálně dominantní, dědičné 

neurodegenerativní onemocnění s fatální prognózou. Kromě typicky progresivně se zhoršujících 

motorických funkcí lze u pacientů s HD pozorovat i kognitivní a behaviorální poruchy. Mezi 

nejčastější symptomy patří také poruchy spánku, které mají velmi závažný dopad na kvalitu života 

jak pacientů, tak jejich blízkých a které bývají asociovány s narušeným cirkadiánním systémem. 

Stabilizace délky i kvality spánku posílením cirkadiánního systému by mohla zmírnit či potlačit 

mnohé symptomy HD, jež mají sice přímou příčinu v etiologii HD, sekundárně mohou být ale 

zesíleny dlouhodobým nedostatečným spánkem či právě poruchami cirkadiánního systému. 

U premanifestujících pacientů by takové zásahy mohly vést k pomalejšímu rozvoji či nástupu 

zejména kognitivních symptomů nemoci. Terapie synchronizujícím jasným světlem, která 

se již osvědčila jako doplňkový nástroj k léčbě afektivních i ně kte rých neurodegenerativních 

nemocí, by mohla vést k radikálnímu zlepšení života pacientů alespoň v počátečních stadiích 

onemocnění.

Abstract
Huntington disease (HD) is an autosomal-dominant, hereditary neurodegenerative disease with 

a fatal prognosis. Besides the typical progressive deterioration of motor functions, cognitive and 

behavioral disorders can also be observed in patients with HD. The most common symptoms 

also include sleep disorders that seriously aff ect the quality of life of the patients but also of their 

relatives and which are being associated with a disrupted circadian system. Stabilization of sleep 

lenght and quality by strengthening the circadian system could mitigate or suppress many HD 

symptoms, which, although being a direct result of the disease etiology, can secondarily be 

heightened by long-term insuffi  cient sleep or circadian system disturbances. Such interventions 

could lead to slower especially cognitive symptom progression or onset in pre-manifesting 

patients. Synchronizing bright light therapy, which has already proven useful as a complementary 

tool for the treatment of aff ective disorders, as well as some neurodegenerative diseases, could 

lead to radical improvement of the patients’ quality of life, at least in the early stages of disease 

development.
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Úvod
Huntingtonova choroba (Huntington dis-

ease; HD) je zapříčiněna abnormálním 

zmnožením repetic trinukleotidu CAG 

v exonu 1 genu Huntingtinu na 4. chromo-

zomu [1]. Tento genetický defekt vede k for-

mování abnormálního mutantního proteinu 

se strukturálními a funkčními změnami. Hun-

tingtin (HTT) je multifunkční protein, který se 

podílí na několika buněčných procesech, je-

jichž výčet je skvěle shrnut v review Saudoua 

a Humberta [2]. V souhrnu lze říct, že HTT je 
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nosný, tzv. scaff old, protein, který svazuje 

proteiny do komplexů, a tím koordinuje bu-

něčné procesy, jako jsou transport organel 

v buňce, endocytóza či transkripce. Gen pro 

HTT byl detekován ve většině tělních tkání. 

V nervovém systému není jeho exprese 

omezena pouze na oblasti, které degene-

rují v důsledku mutace HD, ale vyskytuje se 

hojně v celém mozku, vč. mozečku [3].

Huntingtonova choroba se nejčastěji ma-

nifestuje mezi 35. a 45. rokem života, ovšem 

doba nástupu nemoci se může lišit podle 

závažnosti mutace [4]. HD je charakterizo-

vána především progresivním zhoršováním 

motorických funkcí, neboť degenerace pri-

márně zasahuje neurony striata a motoric-

kého kortexu [5]. Nemoc se však také pro-

jevuje významnými defi city v kognitivních 

procesech a změnami chování, např. iritabi-

litou a psychiatrickými symptomy [6]. Velmi 

často se u pacientů s HD objevuje deprese, 

která koreluje s poruchami spánku [7]. Poru-

chy spánku jsou detekovány až u 80 % pa-

cientů s HD [8,9]. Pomocí dotazníkových še-

tření, aktigrafi ckých a polysomnografi ckých 

záznamů bylo zjištěno, že u pacientů s HD 

je ovlivněna jak kvalita, tak kvantita spánku 

a dochází také k poruše jeho časování, což 

značí změny v cirkadiánním systému. Změny 

spánku a cirkadiánní rytmicity jsou mnohdy 

detekovatelné již ve velmi časných stadiích 

nemoci, ještě dříve, než se objevují první 

motorické symptomy [9,10]. Jejich včasná ko-

rekce by tak mohla výrazně přispívat k oddá-

lení manifestace HD.

Cirkadiánní systém
Mnohé fyziologické procesy i mnohé formy 

chování člověka se periodicky opakují v prů-

běhu 24h cyklů, tj. probíhají s tzv. cirka-

diánní rytmicitou. Cirkadiánní signál vzniká 

na úrovni jednotlivých buněk a jeho mole-

kulární podstatou jsou autoregulační tran-

skripčně-translační zpětnovazebné smyčky 

mezi hodinovými geny a jejich proteinovými 

produkty [11]. Molekulární smyčky zahrnují 

transkripční represory, tj. proteiny CRY1, CRY2, 

PER1, PER2 a REV-ERB α, a transkripční aktivá-

tory BMAL1 a CLOCK a RORA. Základní prin-

cip vzájemných interakcí je uveden na obr. 1.

Aby byly molekulární oscilace v jednotli-

vých buňkách tkání vzájemně synchronizo-

vány a aby byly synchronizovány cirkadiánní 

oscilace jednotlivých tkání mezi sebou, musí 

buňky dostávat synchronizační časové sig-

nály z centrálního cirkadiánního pace-

makeru, který leží v suprachiazmatických já-

drech hypotalamu (suprachiasmatic nucleus; 

SCN). Jednotlivé neurony SCN jsou podobně 

jako jiné buňky těla autonomními cirkadián-

ními oscilátory s vlastním hodinovým me-

chanizmem. Významné práce ze začátku to-

hoto století ukázaly, že pokud tyto neurony 

přežívají v disociované kultuře, oscilují každý 

s vlastní fází i periodou [12]. Jak tedy dokáže 

SCN jako celek vydávat silný jednotný vý-

stupní signál synchronizující periferní oscilá-

tory? Celá řada současných studií ukázala, že 

oscilace jednotlivých neuronů jsou vzájemně 

synchronizovány několika neurotransmitery 

a neuropeptidy, z nichž nejdůležitější jsou 

vazoaktivní intestinální peptid (VIP), arginin 

vazopresin (AVP) a GABA [13–18]. Neuropep-

tid VIP se váže na receptory VPAC2 a spou-

ští intracelulární kaskádu s G-proteinem jako 

druhým poslem. Ta vede k fosforylaci tran-

skripčního faktoru CREB (cAMP response ele-

ment binding) a k aktivaci transkripce genů 

s promotorovou sekvencí CRE (cAMP re-

sponse element). Sekvenci CRE mají ve svém 

promotoru i geny Per1 a Per2, které tak mají 

dvojí regulaci transkripce; jednak vazbou di-

meru CLOCK/ BMAL1 na E-box element, jed-

nak vazbou aktivovaného CREB na CRE ele-

ment ve svém promotoru (obr. 1) [19]. Tento 

princip zajišťuje sjednocení fází transkripč-

ních oscilací a zvyšuje amplitudu cirkadián-

ních rytmů [14,17].

Suprachiasmatická jádra hypotalamu ge-

nerují a udržují cirkadiánní signál s periodou 

blízkou 24 h, a to i v neperiodickém prostředí 

stálé tmy. Tato vnitřní perioda je adapto-

vána k přesnému geofyzikálnímu času po-

mocí světla [20]. K přenastavení hodin svět-

lem dochází jen během noci či subjektivní 

noci jedince; světlo vyvolá fázové zpoždění 

při působení zvečera či předběhnutí hodin 

při působení zrána. Informace o světelných 

podmínkách okolí jsou do SCN vedeny pří-

mou drahou z retiny, tzv. retinohypotalamic-

kým traktem (RHT), který je tvořen axony tzv. 

vnitřně senzitivních gangliových buněk (in-

trinsically photosensitive retinal ganglion 

cells; ipRGC) obsahujících fotopigment me-

lanopsin [21]. Glutamát uvolněný z RHT ak-

tivuje receptory kyseliny N-methyl-D-aspa-

ragové s GluN2B podjednotkou a vzestup 

intracelulárního Ca aktivuje signální dráhu, 

která, podobně jako signalizace od recep-

toru VPAC2, vede k transkripční aktivaci 

Per1 vazbou CREB na CRE sekvenci v jeho 

promotoru [22–24]. Tato světlem induko-

vaná změna v expresi hodinového genu je 

považována za hlavní mechanizmus, kte-

rým světlo synchronizuje cirkadiánní sys-

tém [21]. Cirkadiánní pacemaker v SCN tedy 

integruje endogenní časové signály s časem 

okolí a o výsledku informuje neuronálními 

i humorálními drahami celý organizmus. 

Synchronizuje tak rytmy v jednotlivých tká-

ních a umožňuje jejich adaptaci na časové 

změny v okolním prostředí. Udává organi-

zmu vnitřní časový řád (obr. 2).

Změny cirkadiánního systému 
u pacientů s Huntingtonovou 
chorobou
Ztráta pravidelného střídání denní aktivity 

a spánku je nejzřetelnější pozorovanou po-

ruchou cirkadiánního systému u pacientů 

s HD. Bývá popisována fragmentace spánku 

a zvýšená noční aktivita [9,10], je změněna 

architektura spánku a též zvýšena latence 

usnutí [25]. Ve dne jsou pacienti ospalí, často 

podřimují během dne. Toto chování bývá 

spojováno se zhoršením kognitivních schop-

ností a také s rozvojem deprese [7,26]. Jed-

nou z možných příčin tohoto stavu mohou 

být úbytek orexigenních neuronů laterál-

ního hypotalamu a snížená amplituda cirka-

diánního rytmu v aktivitě orexigenních neu-

ronů, které významně přispívají k udržování 

stavu bdělosti [27,28]. Nedávná studie také 

ukázala, že až 63 % pacientů s HD má naru-

šený cirkadiánní rytmus v krevním tlaku, což 

významně koreluje právě se sníženou kvali-

tou spánku u těchto pacientů [29].

Analýza cirkadiánního rytmu melatoninu 

v plazmě v průběhu 24 h u kontrolních osob, 

u premanifestujících a u pacientů v pokroči-

lých stadiích HD ukázala, že amplituda rytmu 

sekrece melatoninu je u pacientů snížena 

a noční koncentrace melatoninu v plazmě 

je výrazně nižší. Sekrece melatoninu klesá 

s rozvojem a postupem nemoci, ale výrazně 

nižší koncentrace melatoninu než u zdra-

vých osob je patrna již v preklinických sta-

diích nemoci [25,30]. Vedle melatoninu jsou 

u pacientů s HD pozorovány také změny 

v produkci kortizolu. Celková produkce kor-

tizolu za 24 h je v časné fázi choroby signi-

fi kantně vyšší a denní profi l rytmu v sekreci 

kortizolu má zvýšenou amplitudu [31]. Pa-

cienti s HD vykazují zejména zvýšenou ranní 

produkci kortizolu, kterou lze obecně po-

zorovat při spánkových deprivacích [31,32]. 

Přestože spánkové poruchy spolu s ab-

normální sekrecí kortizolu mohou mít pří-

činu také ve změnách HPA osy u pacientů 

s HD [31,33], abnormální sekrece melato-

ninu naznačuje, že změny by mohly prame-

nit i z narušené signalizace z SCN.

O změnách v SCN u pacientů s HD není 

známo mnoho. Jediné dostupné informace 
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pocházejí z post mortem studií. V jedné ta-

kové studii bylo pomocí imunocytoche-

mie v SCN zjištěno signifikantní snížení 

počtu neuronů produkujících VIP, a v menší 

míře také redukce neuronů produkujících 

AVP [34]. Změny v hladinách VIP a AVP se 

zdají být specifi cké pro SCN, v jiných hypota-

lamických strukturách, jako je paraventriku-

lární jádro, nebyly detekovány [35,36].

Obr. 1. Transkripční aktivátory (BMAL1 a CLOCK) indukují transkripci represorů (CRY1, CRY2, PER1, PER2) vazbou k E-boxu v jejich pro-
motorových sekvencích. Ty po vstupu do jádra inhibují aktivitu aktivátorů CLOCK/BMAL1 a zároveň jsou substrátem pro posttranslační 
modifi kace a řízenou proteinovou degradaci. Když jejich hladina klesne dostatečně, aktivátory CLOCK/BMAL1 se uvolní a cyklus začíná 
znovu. Hladiny transkriptů i proteinů hodinových genů takto oscilují v buňkách s cirkadiánní periodou. Dynamiku těchto oscilací mění 
exprese Per1 a Per2 spouštěná aktivací CRE místa v promotoru těchto genů signalizací VIP nebo/a světelnými stimuly. Transkripční akti-
vátory však neindukují transkripci pouze vlastních represorů, ale také velké skupiny tzv. hodinami kontrolovaných genů, jejichž proteiny 
nemají přímou zpětnou vazbu v cirkadiánním mechanizmu, ale mají vlastní, tkáňově specifi ckou funkci. Genomové studie ukázaly, že až 
10 % genové transkripce může být regulováno cirkadiánním mechanizmem [19].
VIP – vazoaktivní intestinální peptid

Fig. 1. Transcriptional activators (BMAL1 and CLOCK) induce transcription of repressors (CRY1, CRY2, PER1, PER2) by binding to the E-box 
element in their promoter sequences. The repressors inhibit the activity of CLOCK/BMAL1 after translocation to the nucleus and they 
are simultaneously a substrate for post-translational modifi cations and controlled protein degradation. Upon signifi cant decrease in the 
repressors levels, the activators CLOCK/BMAL1 are released and the cycle commences again. The levels of transcripts and protein pro-
ducts of clock genes oscillate with circadian period in the cells. The dynamics of these oscillations are changed by expression of Per1 
and Per2 triggered by activation of CRE  via VIP signalization and/or photic stimulation. The transcriptional activators induce transcrip-
tion of their own repressors as well as large groups of clock-controlled genes. The proteins of clock-controlled genes do not have direct 
feedback to the circadian mechanism but exhibit their own tissue-specifi c functions. Genome studies have shown that up to 10% of the 
whole gene transcription may be regulated by the circadian mechanism [19].
VIP – vasoactive intestinal peptide
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Animální modely Huntingtonovy 
choroby a cirkadiánní systém
Identifi kace genetické mutace HD vedla k vy-

tvoření několika animálních modelů, které ex-

primují HTT se zvýšeným množstvím repe-

tic CAG tripletů [37]. Zdaleka nejpoužívanější 

model je linie transgenních myší R6/ 2, do je-

jichž genomu byl vpraven fragment lidského 

genu nesoucího prodlouženou repetici CAG 

tripletů [38]. Tento model vykazuje mnoho 

symptomů analogických symptomům pa-

cientů s HD [9,39–43]. Cirkadiánní fenotyp 

HD mutace se u tohoto modelu objevuje po 

16. týdnu života. Zvířata pozvolna ztrácí ryt-

micitu v pohybové aktivitě i v podmínkách 

střídání světla a tmy a kolem 18. týdne jsou již 

zcela arytmická. Kromě úbytku orexigenních 

neuronů v laterálním hypotalamu a snížené 

amplitudy rytmu jejich elektrické aktivity [28] 

byly u těchto myší zjištěny také snížené hla-

diny VIP a VPAC2 v SCN [44]. Behaviorální fe-

notyp myší R6/ 2 se výrazně podobá feno-

typu myší Vipr2-/ - a Vip-/ -, tj. myší s delecí těchto 

genů. Tato zvířata mají narušený cirkadiánní 

rytmus ve střídání aktivity a spánku; vyka-

zují zvýšenou denní a sníženou noční akti-

vitu v režimu střídání světla a tmy (light/ dark) 

nebo vykazují úplně arytmické chování v re-

žimu stálé tmy (dark/ dark), mají narušený ryt-

mus tělesné teploty a změny v EEG [41–45]. 

Je možné, že narušená signalizace VIP v SCN 

je jednou z příčin patologických změn cirka-

diánních rytmů u pacientů s HD. Jednotlivé 

neurony SCN nejsou mezi sebou dobře syn-

chronizovány, každý osciluje s odlišnou perio-

dou a fází a SCN jako celek není schopné ge-

nerovat jednotný časový signál, který předává 

k periferním tkáním organizmu. Tato úvaha je 

podpořena nálezem desynchronizovaných 

periferních hodin v játrech u jednoho z my-

ších modelů HD [46].

Alternativní vysvětlení či paralelní feno-

typ nabízí dvě nedávné studie, které ukázaly 

postupnou degeneraci sítnice oka, zejména 

čípků a také gangliových ipRGC s melanopsi-

nem [43,47]. Jejich výsledky naznačují, že cir-

kadiánní fenotyp 20týdenních myší R6/ 2 je 

podobný fenotypu myší s genetickou delecí 

melanopsinu [48]. To pravděpodobně vede 

ke snížení fotorecepce sítnice, a tím i vý-

znamu světelné informace jako synchroni-

zátoru cirkadiánního pacemakeru v SCN. Ač-

koliv úbytek melanopsinu nebyl studován 

u pacientů s HD, degenerace čípků a změny 

v barevném vidění potvrzují degeneraci sít-

nice i u těchto pacientů [49,50].

Světelná synchronizace 
u modelu R6/ 2
Z experimentů na animálních modelech HD 

vyplývá, že mutovaný HTT v buňkách SCN 

pracuje v neprospěch intercelulární synchro-

nizace, která podmiňuje sebeudržující chod 

cirkadiánních hodin, a to minimálně potlače-

ním syntézy VIP ve světločivných buňkách 

ventrolaterálního SCN. Z pokusů na myších 

Vipr2-/ - vyplývá, že absence VIP nemusí měnit 

intracelulární signální kaskádu aktivovanou 

světelnými podněty, která vede k transkripci 

hodinových genů, mění ale vzájemnou ko-

munikaci mezi buňkami, a tím i celkové na-

stavení cirkadiánního pacemakeru. To má za 

následek jeho změněnou reaktivitu na syn-

chronizační světelné stimuly. Nedostatek VIP 

může být bezpochyby podpořen také změ-

něnou GABAergní signalizací, která je pod-

statnou součástí intercelulární synchroni-

zace v SCN regulované VIP, či chronickou 

hyperpolarizací neuronů SCN bez VIP [50,51].

K patologickým změnám v synchroni-

zaci hodin přispívá jistě také postupná de-

generace sítnice oka a zejména ipRGC. Pro-

tože ipRGC inervují kromě SCN také olivární 

pretektální jádro, kromě histologické de-

tekce úbytku melanopsinu se v experimen-

Obr. 2. Suprachiasmatické jádro získává informace o světle ze sítnice oka a synchronizuje rytmy v tělesné teplotě, produkci melatoninu 
a kortizolu, reguluje spánek a přímo i nepřímo fyziologii periferních orgánů.
RHT – retinohypotalamický trakt; SCN – suprachiasmatická jádra

Fig. 2. The suprachiasmatic nucleus receives the photic information from the retina, synchronizes rhythms in body temperature, mela-
tonin and cortisol secretion, sleep regulation and regulates the physiology of the peripheral organs both directly and indirectly.
RHT – retinohypothalamic tract; SCN – suprachiasmatic nucleus
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tech s R6/ 2 myšmi testovala též jejich funkce 

– měřením pupilárního refl exu [43,47]. Při 

použití nízké a střední intenzity světla byl 

pupilární reflex redukován již u myší ve 

věku 12 a 15 týdnů a zcela selhával ve věku 

20 týdnů i při použití jasného silného světla. 

Tyto změny ve fotorecepci sítnice mohou 

přispět k progresivní deregulaci cirkadián-

ního systému pozorované u pacientů s HD. 

Jak onemocnění progreduje, cirkadiánní sys-

tém se stává čím dál necitlivějším k vněj-

šímu cyklu světla a tmy, zvláště při nízké in-

tenzitě osvětlení. V souladu s těmito nálezy 

další experimenty ukázaly, že zvýšení inten-

zity synchronizačního světla může zpoma-

lit progresi dysfunkce cirkadiánního systému 

u myší R6/ 2. Pokud byl těmto myším apliko-

ván hodinový světelný pulz o vysoké inten-

zitě 1 500 luxů, rytmus jejich pohybové akti-

vity se lépe synchronizoval s 24h režimem. 

Ještě lepších výsledků bylo dosaženo kom-

binací silného světla a pravidelné pohy-

bové aktivity načasované na stejnou denní 

dobu [53].

Ačkoliv cirkadiánní systém animálních 

modelů funguje v principu podobně jako 

cirkadiánní systém člověka, myši jako noční 

živočichové jsou výrazně citlivější na inten-

zitu světla než denní živočichové a 1 500 lx 

použitých pro synchronizaci nočních hlo-

davců nemusí být lidským cirkadiánním sys-

témem vnímáno jako silné světlo. Je známo, 

že nesynchronizovaný, tzv. volný běh cirka-

diánních hodin podle molekulárního me-

chanizmu (obr. 1) může u člověka nastat již 

při nízké intenzitě denního světla v kombi-

naci s nedostatečnou tmou v noci. Stejně 

jako u všech organizmů je totiž cirkadiánní 

systém člověka závislý na vysokém kontrastu 

mezi světlem ve dne a tmou v noci [54,55]. 

Je možné, že narušená signalizace VIP v SCN 

může projevit svůj patologický dopad na 

amplitudu a fázi cirkadiánních rytmů ze-

jména u těch pacientů s HD, kteří žijí ve 

špatně osvětleném prostředí denním a při-

světlovaném prostředí nočním. Zvýšení kon-

trastu mezi dnem a nocí či cílená terapie 

jasným světlem by mohly tento defi cit čás-

tečně kompenzovat, alespoň do té doby, 

dokud ipRGC buňky sítnice produkují do-

statečné množství melanopsinu. Synchroni-

začního účinku světla na cirkadiánní systém, 

jehož narušení bývá průvodním jevem řady 

dalších neurodegenerativních onemocnění, 

se již využívá při terapii Alzheimerovy i Par-

kinsonovy nemoci, které jsou v pozdějších 

stadiích také provázeny degenerací sítnice 

a ztrátou fotosenzitivity. Obvykle se terapie 

provádí ráno nebo 2× denně silným svět-

lem o intenzitě 5 000–10 000 l lx (měřeno ve 

výšce očí) [56–60].

Závěr
Narušení cirkadiánní rytmicity je podobně 

jako u většiny neurodegenerativních one-

mocnění zjevné u pacientů s HD ještě v pre-

manisfestujících stadiích nemoci, před roz-

vojem motorického a kognitivního defi citu. 

Společným znakem pacientů i animálních 

modelů je úbytek VIP signalizace v cirkadián-

ním pacemakeru, který znamená desynchro-

nizaci mezi jednotlivými buněčnými oscilá-

tory SCN a snížení amplitudy cirkadiánních 

rytmů či jejich úplnou ztrátu. Protože buňky 

SCN produkující VIP jsou také receptivní pro 

signály z RHT, tento defi cit mění i výchozí 

nastavení pacemakeru a jeho odpověď na 

světelné stimuly. Z dostupných studií jed-

noznačně vyplývá, že nedostatečný rozdíl 

v intenzitě světla mezi dnem a nocí přispívá 

k dalšímu rozvolnění interakcí mezi buněč-

nými oscilátory a desynchronizaci cirkadián-

ních rytmů. Je překvapivé, jak málo je známo 

o využití světelné terapie jak u pacientů 

s HD, tak u myších modelů této nemoci, ač-

koliv u jiných typů neurodegenerativních 

onemocnění se již s úspěchem využívá pro 

zvýšení amplitudy cirkadiánních oscilací, 

a tím i zlepšení spánku, nálady, kognitivních 

a dokonce i motorických funkcí a pro zpo-

malení progrese onemocnění.
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