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APOE a BDNF jako rizikové genetické markery 
pro predikci nástupu a rozvoje kognitivního 
defi citu při Alzheimerově nemoci 

APOE and BDNF as genetic risk markers 

for predicting the onset and development 

of cognitive defi cits due to Alzheimer’s disease

Souhrn
Alzheimerova nemoc (AN) je progresivní neurodegenerativní onemocnění, pro které je 

charakteristické odumírání neuronů v oblasti hipokampu a mediotemporálních struktur s typicky 

narušenou epizodickou pamětí. U pacientů se však liší věkem rozvoje a rychlostí progrese 

onemocnění. Zdá se, že hlavními modifi kátory těchto dvou faktorů jsou genetické polymorfi zmy 

v genech pro apolipoprotein E (APOE) a brain-derived neurotrophic factor (BDNF). Hlavní rizikovou 

genetickou determinantou pro rozvoj AN s pozdním počátkem je alela APOE 4. BDNF Val66Met 

polymorfi zmus se ukazuje jako rizikový pro rozvoj kognitivního defi citu a rychlost progrese 

onemocnění, ať už přímou nebo nepřímou interakcí s APOE genotypem. U nositelů kombinace 

obou rizikových polymorfi zmů APOE 4/ BDNF Met byly pozorovány horší výkon v oblasti epizodické 

paměti a rychlejší progrese kognitivního defi citu v čase při porovnání s pacienty, kteří nejsou nositeli 

této rizikové kombinace nebo nejsou nositeli žádného z těchto polymorfi zmů. Tato informace 

může být užitečná pro přesnější identifi kaci jedinců v riziku rozvoje AN i pro pravděpodobnou 

prognózu a další vývoj onemocnění. Zároveň ně kte ré intervenční studie naznačují potenciál pro 

nefarmakologické intervence v prevenci onemocnění u rizikových jedinců. 

Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is typically initialized by 

neuronal death in the hippocampus and mediotemporal structures with characteristic episodic 

memory impairment. However, what is diff erent among AD patients is the age of onset and 

progression of the disease. It has been suggested that the major modulators of these factors 

appear to be genetic polymorphisms in apolipoprotein E (APOE) and brain-derived neurotrophic 

factor (BDNF) genes. APOE 4 allele is the primary genetic determinant of risk for late-onset 

AD. BDNF Val66Met polymorphism has been shown to alter the risk for developing cognitive 

impairment and disease progression, both directly and indirectly through an interaction with 

the APOE genotype. The carriage of both risky variants APOE 4/ BDNF Met was associated with 

episodic memory impairment and faster memory decline compared to the presence of only one 

or none of these high-risk polymorphisms. This information may be useful for improving the early-

detection capability of individuals at risk of developing AD, as well as advancing our understanding 

of polymorphic combinations that predict the rate of disease progression. Some interventional 

studies also indicate potential for non-pharmacological interventions in disease prevention in 

high-risk individuals.
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Kontinuum Alzheimerovy nemoci
Alzheimerova nemoc (AN) je závažné neu-

rodegenerativní onemocnění mozku s ce-

losvětově stoupající prevalencí. Charakteri-

stickým rysem je odumírání (degenerace) 

neuronů v důsledku patologického extra-

celulárního hromadění beta amyloidu (A ) 

a intracelulární akumulace tau proteinu [1,2]. 

K patofyziologickým změnám dochází již 

přibližně 20–30 let před prvními klinickými 

projevy [3]. Toto období je označováno 

jako preklinická fáze nemoci. Na ni v konti-

nuu onemocnění navazuje časná klinická 

nebo také prodromální fáze nemoci, za kte-

rou je považován syndrom tzv. mírné kogni-

tivní poruchy (mild cognitive impairment; 

MCI). MCI je stadium, ve kterém je již objek-

tivně narušena kognice měřená standardi-

zovanými neuropsychologickými testy, ale 

jedinec je ještě zcela soběstačný [4]. MCI je 

považována za mezistupeň mezi zdravým 

stárnutím a syndromem demence. Ne vždy 

ale tomu tak je. Udává se, že 20–40 % pa-

cientů s MCI konvertuje zpět do normy, což 

však ukazují převážně populační studie [5,6]. 

Studie vycházející z klinické populace udá-

vají nižší konverzi mezi 5–16 % [7,8]. Stadiu 

MCI často předchází stadium tzv. subjektiv-

ního kognitivního poklesu (subjective cogni-

tive decline; SCD), což je období, kdy pacient 

vyhledá lékaře kvůli subjektivním stížnostem 

na kognici, ale objektivně ve standardizova-

ných neuropsychologických testech jsou 

jeho výkony ještě v normě a nesplňuje tedy 

kritéria MCI. Přesto jsou tito pacienti ve zvý-

šeném riziku rozvoje AN [9,10]. Někdy se to-

muto stadiu říká, že „pacient již ví, zatímco 

lékař ještě ne“ [1,11]. 

Pro časnou fázi AN je typická neurodege-

nerace v oblasti hipokampů a mediotem-

porálních struktur s charakteristicky naruše-

nou funkcí epizodické paměti [12]. To, v čem 

se ovšem toto onemocnění mezi jedinci 

liší, je věk nástupu prvních klinických obtíží 

a rychlost progrese nemoci. Nedávné stu-

die poukazují na důležitost různých faktorů 

ovlivňujících nástup a progresi AN, vč. socio-

ekonomického statusu nebo životního stylu 

jedince. Přesto se ale zdá, že nejzásadnějšími 

z nich jsou genetické predispozice. Již dříve 

bylo prokázáno, že rizikové genetické po-

lymorfi zmy v genech pro apolipoprotein E 

(APOE) a TOMM40 zhoršují výkonnost v pro-

storové navigaci u pacientů s MCI [13–15], 

a tím zvyšují riziko rozvoje AN u svých nosi-

telů. Existují ale i další intenzivně studované 

polymorfi zmy v patofyziologii AN. V tomto 

přehledovém článku se zaměříme na poly-

morfi zmy v genech pro APOE a brain-de-

rived neurotrophic factor (BDNF), jejich sy-

nergetický vliv na kognitivní funkce a s tím 

spojené riziko rozvoje AN. 

Polymorfi zmy v genech 
pro APOE a BDNF
Jednonukleotidový polymorfizmus (sin-

gle nucleotide polymorphism; SNP) v genu 

pro APOE vede k substituci aminokyseliny 

cysteinu (Cys) za arginin (Arg) na kodónech 

112 a 158. Dle daného polymorfi zmu jsou 

alely označovány jako 2 (Cys112, Cys158), 

3 (Cys112, Arg158) a 4 (Arg112, Arg158), při-

čemž riziková pro rozvoj AN je prezentace 

alely 4. APOE 4 je považována za hlavní 

genetický rizikový faktor pro nástup AN 

s pozdním počátkem, tedy po 65. roce ži-

vota, kdy nositelé jedné rizikové alely (APOE 

3/ 4) mají 3–4× vyšší pravděpodobnost 

rozvoje AN. U homozygotů 4 (APOE 4/ 4) 

je toto riziko dokonce až 15× vyšší v porov-

nání s jedinci bez rizikové alely [16–18]. Záro-

veň se udává, že pravděpodobnost klinické 

manifestace AN je u těchto jedinců 80 % do 

80 let života [16,19]. Také věk nástupu klinic-

kých příznaků se snižuje se zvyšujícím se po-

čtem rizikových APOE 4 [20]. Apolipoprotein 

E (ApoE) je v mozku produkován převážně 

astrocyty (a částečně mikrogliemi a buň-

kami choroidálního plexu [21]) a jeho hlavní 

funkcí je transport cholesterolu a jiných li-

pidů k neuronům skrze vazbu na ApoE re-

ceptory [22]. Cholesterol je v mozkové tkáni 

klíčový pro tvorbu a udržování synaptických 

spojů mezi neurony, ApoE se tedy podílí na 

synaptické plasticitě. V případě narušení li-

pidové homeostázy dochází k degene-

raci synapsí a dendritických trnů a zhoršení 

neurotransmise, což významně přispívá 

k neurodegenerativních změnám [23]. Me-

chanizmy, kterými se odlišné ApoE izoformy 

podílí na lipidovém metabolizmu v moz-

kové tkáni, mohou být skrze jejich rozdíly 

v konformaci, posttranslačních modifi kacích, 

odlišnou preferencí lipoproteinů nebo afi -

nitou k receptorům. Nicméně jejich přesná 

role nebyla doposud objasněna [24]. Je ale 

známo, že izoformy ApoE se liší ve své afi -

nitě k A  v mozkové tkáni. Akumulace A  

je považována za počátek toxické kaskády, 

která vede k synaptické dysfunkci a násled-

nému odumírání neuronů a neurodegene-

raci [25], přestože tato teorie byla ně kte rými 

autory zpochybňována [26]. Nejvyšší afi-

nitu k A  má ApoE2, poté ApoE3 a nejnižší 

ApoE4 protein. Předpokládá se, že díky sil-

nější vazbě se ApoE2 a ApoE3 podílí na efek-

tivnějším odstraňování extracelulárního A  

ve srovnání s ApoE4, u kterého je akumu-

lace nejvýraznější [27]. U nositelů rizikové 

APOE 4 alely bylo opakovaně pozorováno 

vyšší hromadění patologického A  a záro-

veň bylo v mozku narušeno jeho odbourá-

vání [28,29]. Mezi pacienty s pozitivním nále-

zem A  v mozku je prevalence této rizikové 

alely vysoká. Konkrétně 66% u pacientů s de-

mencí při AN a dokonce 64 % u jedinců ve 

stádiu MCI [30]. Kromě toho byl u jedinců 

s APOE 4 pozorován vztah mezi prezen-

tací A  plaků a kognitivní výkonností. Uká-

zalo se, větší množství A  plaků v mozkové 

tkáni u nositelů APOE 4 je spojeno s výraz-

nějším poklesem v kognitivní výkonnosti, 

zejména v oblasti globálního kognitivního 

výkonu, epizodické paměti a vizuospaciál-

ních funkcích [31]. V longitudinálním sledo-

vání kognitivně zdravých jedinců byl zazna-

menán počátek poklesu epizodické paměti 

kolem 60. roku věku, který byl u nositelů 

APOE 4 následován výrazně rychlejší pro-

gresí paměťového defi citu v porovnání s no-

siteli 3 a 2 alel. Podobný trend, ale méně 

významný, byl pozorován i v oblasti globál-

ního hodnocení kognice a vizuospaciálních 

funkcí [32].

Nositelé APOE 4 tedy rozvinou nemoc 

častěji, v nižším věku a může mít u nich rych-

lejší průběh.

Nicméně rychlost progrese onemocnění 

se v kombinaci s dalšími genetickými poly-

morfi zmy liší. V této souvislosti je studován 

zejména polymorfi zmus v genu pro BDNF. 

SNP vede k nahrazení aminokyseliny valinu 

(Val) methioninem (Met) na 66. kodonu, což 

negativně ovlivňuje produkci a sekreci BDNF 

proteinu [33]. BDNF patří do rodiny pro-

teinů označovaných jako neurotrofi ny, což 

jsou látky, které v rámci nervového systému 

ovlivňují růst, diferenciaci a buněčný cyklus 

neuronů i glií [34]. Během ontogeneze cen-

trální nervové soustavy je BDNF klíčový pro 

růst a směrování axonů [35], podporuje růst 

dendritických trnů a moduluje tvorbu sy-

napsí [36]. Nicméně se ukazuje, že i během 

dospělého života se tento neurotrofi n po-

dílí na vzniku nových neuronů, tzv. neuroge-

nezi, a to zejména v oblasti hipokampu [37], 

čímž se významně účastní na tvorbě pamě-

ťové stopy [38,39]. BDNF v organizmu vzniká 

enzymatickým štěpením ze svého prekur-

zoru zvaného proBDNF pomocí plazminu. 

Uvedená přeměna z proBDNF na BDNF je 

důležitým procesem regulujícím neuro-

nální aktivitu a paměťové procesy z důvodu 

zcela opačného efektu na funkce neuronu. 

proLékaře.cz | 13.2.2026



APOE A BDNF JAKO RIZIKOVÉ GENETICKÉ MARKERY PRO PREDIKCI NÁSTUPU A ROZVOJE KOGNITIVNÍHO DEFICITU

Cesk Slov Ne urol N 2020; 83/ 116(3): 257– 262 259

ProBDNF se na buněčné membráně váže na 

receptor p75NTR (neurotrophin receptor p75), 

čímž v oblasti hipokampu spouští kaskádu 

vedoucí ke snižování synaptické aktivity, 

zvyšování dlouhodobé deprese mezi neu-

rony a apoptotickému zániku buňky. Oproti 

tomu BDNF se na membráně váže na tyro-

zinkinázový receptor B (tropomyosin recep-

tor kinase B; TrkB), kdy jeho navázáním do-

chází k dimerizaci a následné autofosforylaci, 

která posléze spustí zcela odlišnou kaskádu 

dějů. Výsledkem je posílení synaptické akti-

vity mezi neurony, zvýšení dlouhodobé po-

tenciace, a tím posílení tvorby paměťové 

stopy [40–42]. Právě kvůli své roli v dlouho-

dobé potenciaci je BDNF považován za klí-

čovou molekulu podporující tvorbu a kon-

solidaci paměťové stopy. 

Nižší hladiny sérového BDNF jsou spo-

jovány s horšími výsledky v ně kte rých pa-

měťových testech u zdravých jedinců [43]. 

Z těchto důvodů se začalo o sérovém BDNF 

uvažovat jako o možném rizikovém faktoru 

AN. A skutečně se ukazuje, že u pacientů ve 

stadiu MCI i ve stadiu syndromu demence 

při AN jsou ve srovnání se zdravými kont-

rolami patrny výrazně snížené sérové hla-

diny BDNF [44]. Tyto snížené hladiny se u pa-

cientů ve stadiu AN ukázaly jako prediktory 

pro progresi kognitivního defi citu. Pacienti 

s nižší hladinou BDNF měli výrazně rych-

lejší pokles kognice během jednoho roku 

než pacienti s vyšší hladinou BDNF [45]. Po-

dobně nižší hladiny BDNF v mozkomíšním 

moku měly za následek rychlejší progresi 

z MCI do AN [46].

Předpokládá se, že hladiny BDNF jsou 

ovlivněny genetickým polymorfizmem 

v genu pro BDNF [33,47]. Samotné nositel-

ství rizikové alely BDNF Met je spojováno 

s narušením výkonu v oblasti paměti u ko-

gnitivně zdravých, které je akcentováno 

v průběhu stárnutí. Paměťový defi cit je pří-

tomen v oblasti deklarativní epizodické pa-

měti [48], která je závislá zejména na funkci 

hipokampu [49], pro jehož správnou funkci 

je neurotrofi n BDNF klíčový [50]. Současně 

s horšími výsledky v testech epizodické pa-

měti byla u kognitivně zdravých nositelů pa-

tologické BDNF Met alely pozorována ab-

normální aktivace hipokampu při snímání 

mozku pomocí funkční MR ve srovnání s no-

siteli fyziologické BDNF Val alely [33,51]. Vý-

sledky v testech závislých na funkcích 

prefrontálních a frontálních oblastí se mezi 

oběma skupinami nelišily [33]. V 3letém po-

zorování kognitivně zdravých nositelů BDNF 

Met alely se zvýšeným množstvím A  plaků 

v mozku byl přítomen výraznější pokles 

v oblasti epizodické paměti, exekutivních 

funkcí, řeči a také výraznější atrofie v ob-

lasti hipokampu v porovnání s BDNF Val no-

siteli, kteří měli rovněž zvýšené množství A  

plaků v mozku [52]. Ačkoliv BDNF se nezdá 

být specifi ckým bio markerem pro neurode-

generativní onemocnění kvůli jeho zapojení 

v mnoha patologických procesech, lze ho 

považovat za marker progrese paměťového 

defi citu [53,54].  

Vliv kombinace APOE ε4/  BDNF 
Met na kognitivní výkonnost
APOE 4 i BDNF Met jsou dva genetické po-

lymorfi zmy ovlivňující riziko nástupu a roz-

voje AN. APOE jako nejrizikovější genetický 

prediktor pro rozvoj AN s pozdním nástu-

pem a BDNF pro jeho roli v regulaci pamě-

ťových procesů (Tab. 1). V současnosti jsou 

intenzivně studovány interakce mezi tě-

mito geny a vliv možného aditivního efektu 

BDNF na APOE [55]. Ukazuje se, že kombi-

nace těchto rizikových polymorfi zmů se na 

rozvoji kognitivního defi citu podílí význam-

něji než polymorfizmy samotné. U kogni-

tivně zdravých stárnoucích osob nositelství 

APOE 4/  BDNF Met negativně ovlivňuje pa-

měťové funkce, a to selektivně v oblasti epi-

zodické paměti [56]. U jedinců v preklinickém 

stadiu AN, tedy u jedinců bez objektivizova-

telného kognitivního defi citu, kteří byli kogni-

tivně zdraví, ale s patologickou akumulací A  

v mozku, byl pozorován výraznější pokles 

epizodické paměti v čase: 1) nositelé kombi-

nace APOE 4/  BDNF Met dosáhli klinicky sig-

nifi kantního poškození epizodické paměti 

během 3 let; 2) u nositelů kombinace APOE 

4/  BDNF Val se stejný defi cit objevil až v ho-

rizontu 10 let a 3) nositelé APOE 3 by srov-

natelného kognitivního defi citu dosáhli za 

27 let [57]. Otázkou však zůstává, jaký vliv 

má přítomnost těchto rizikových polymor-

fi zmů u jedinců v prodromálním stadiu one-

mocnění, tedy u těch, kteří již klinické sym-

ptomy rozvinuli. Tuto otázku se výzkumníci 

pokusili odpovědět v nedávné průřezové 

studii, která testovala vliv kombinace riziko-

vých genetických polymorfi zmů na kogni-

tivní výkonnost a mozkové struktury klíčové 

pro paměť. Specifi cky byly měřeny objem hi-

pokampů a tloušťka parahipokampální a en-

torhinální kůry u pacientů ve stadiu amnes-

tické MCI (aMCI). Bylo zjištěno, že přestože se 

jedinci nelišili v demografi ckých charakteris-

tikách, skóru Mini-Mental State Examination 

(MMSE) ani míře depresivity, nositelé APOE 4/  

BDNF Met měli selektivně narušenu oddále-

nou výbavnost paměti. Ta bývá považována 

za reprezentaci epizodické paměti, která je 

typicky narušena u AN. U rizikových jedinců 

navíc nebyla pozorována výraznější atrofie 

v žádné z klíčových oblastí pro paměť. Je tedy 

pravděpodobné, že právě tito jedinci rozvi-

nou syndrom demence v čase dříve, protože 

funkční změny v kognici jsou nejsilnějším pre-

diktorem rozvoje syndromu demence [58]. 

Zdá se, že APOE je hlavní determinantou 

nástupu onemocnění a BDNF je reguláto-

rem jeho progrese. Nicméně jakým způso-

bem tyto geny interagují, není v současné 

době zcela objasněno. Nedávná studie po-

prvé popsala epigenetickou interakci pro-

duktů těchto genů. Bylo demonstrováno, že 

odlišné ApoE izoformy regulují sekreci a ště-

pení BDNF proteinu v hipokampálních as-

Tab. 1. Funkce ApoE a BDNF a jejich polymorfi smů.

 Apolipoprotein E 

•  ApoE se podílí na metabolizmu lipidů.

•  tři varianty – APOE ε2 „protektivní“, APOE ε3 „neutrální“, APOE ε4 „riziková“

•  APOE ε4 alela je považována za hlavní genetickou rizikovou determinantu pro rozvoj Alz-

heimerovy nemoci. U svých nositelů zvyšuje množství beta amyloidu plaků v mozkové 

tkáni, zhoršuje kognitivní výkonnost a vede k časnějšímu nástupu Alzheimerovy nemoci.

Brain-derived neurotrophic factor 

•  BDNF je neurotrofi cký faktor, klíčový pro neurogenezi, synaptickou plasticitu, udržování bu-

něčné homeostázy a regulaci paměťových procesů.

•  dvě varianty – BDNF Val „neutrální“, BDNF Met „riziková“ 

•  Nositelé BDNF Met alely mají nižší hladiny BDNF proteinu, což je spojováno s horšími výkony 

v oblasti paměti a rychlejším kognitivním úbytkem v průběhu stárnutí.

ApoE – apolipoprotein E; BDNF – brain-derived neurotrophic factor
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trocytech. Sen et al [59] prokázali u těchto 

buněk 38,4× zvýšenou produkci BDNF pro-

teinu, pokud byly v médiu s ApoE3 ve srov-

nání s kontrolní skupinou buněk. Buňky 

v médiu s ApoE4 proteinem produkovaly 

zanedbatelné množství BDNF proteinu. Vý-

sledky dále prokázaly, že ApoE4 zvyšuje 

translokaci histon deacetylázy do jádra, což 

vede k deacetylaci histonů a negativně to 

ovlivňuje transkripci BDNF genu. V důsledku 

výše popsaných procesů dochází k nižší pro-

dukci BDNF proteinu. Jedním z možných vy-

světlení negativního účinku pozorovaného 

u APOE 4/  BDNF Met nositelů tedy je, že 

ApoE4 ještě více redukuje sekreci BDNF pro-

teinu u Met nositelů. Pro ověření této hypo-

tézy u klinické populace byla provedena pi-

lotní studie a u podskupiny pacientů s aMCI, 

kde byly testovány hladiny BDNF v krevním 

séru. Výsledky naznačily, že společně se se-

lektivně narušenou epizodickou pamětí je 

u pacientů s aMCI pozorováno signifi kantně 

snížené množství BDNF proteinu v krevním 

séru u nositelů rizikové kombinace polymor-

fi zmů APOE 4/  BDNF Met [60,61]. Pokud vez-

meme v úvahu roli BDNF proteinu v neuro-

protekci a synaptické plasticitě, zdá se tedy, 

že společné působení těchto polymorfi zmů 

vede k vyššímu riziku rozvoje AN a její horší 

klinické manifestaci skrze snižování efektiv-

ního množství BDNF proteinu. Nicméně pro 

ověření této teorie bude zapotřebí více prací 

studujících interakci mezi proteiny ApoE 

a BDNF. Dále je pravděpodobné, že právě 

nositelé genu APOE 4 jsou ti, u kterých 

v mozku dochází k dřívější akumulaci pato-

logického A . S ohledem na tuto skutečnost 

je pravděpodobné, že se u těchto pacientů 

nejvíce projeví negativní efekt mutace genu 

pro BDNF protein. Zdá se totiž, že nositelství 

BDNF Met zvyšuje náchylnost mozku k toxic-

kému efektu A  [62]. Negativní efekt pozoro-

vaný u nositelů APOE 4/  BDNF Met je tedy 

zřejmě zprostředkován skrze patologický A  

v mozku.

Epigenetické ovlivnění 
kognitivní výkonnosti 
Přestože genetické polymorfi zmy jsou hlavní 

determinanty nástupu a progrese onemoc-

nění, zdá se, že faktory životního stylu s nimi 

mohou interagovat. Pravidelná fyzická akti-

vita zvyšuje objem šedé hmoty v oblasti hi-

pokampů, a tím i zlepšuje kognitivní výkon-

nost v oblasti paměti [63]. Studie zdravých 

stárnoucích jedinců ukázaly, že vyšší inten-

zita fyzické aktivity vede k lepší kognitivní vý-

konnosti, snižuje riziko kognitivního poklesu 

a atrofie hipokampů, a to výrazněji právě 

u nositelů rizikové alely APOE 4 oproti neut-

rální 3 [64,65]. Podobné výsledky jsou pozo-

rovány u pacientů ve stadiu MCI. Fyzicky ak-

tivní 4 nositelé mají stabilní výkon v kognici, 

zatímco u neaktivních 4 nositelů dochází ke 

kognitivnímu poklesu [66]. Zároveň u fyzicky 

aktivních 4 nositelů bylo pozorováno nižší 

ukládání A  v mozku ve srovnání s méně ak-

tivními nositeli rizikové alely, ale u nositelů 

3 tento efekt pozorován nebyl [66]. 

Protein ApoE hraje důležitou roli také 

v metabolizmu cholesterolu a lipidů. Přítom-

nost APOE 4 zvyšuje hladiny celkového cho-

lesterolu a LDL (low-density lipoproteins) 

cholesterolu, a tím u svých nositelů nega-

tivně ovlivňuje efekt na nervové funkce [67]. 

Vysokokalorická dieta a zvýšený příjem tuků 

byl ve 4letém pozorování kognitivně zdra-

vých stárnoucích spojen s častějším výsky-

tem AN u nositelů 4 a nikoliv 3 alely [68]. 

Na druhé straně změna vysokokalorické 

diety za stravu obsahující sacharidy s níz-

kým glykemickým indexem (např. čerstvá 

zelenina, luštěniny, ořechy) vede u nositelů 

4 ke snižování LDL cholesterolu ve srovnání 

s 3 nositeli [67].

Ve 2leté intervenční studii u zdravých 

stárnoucích nositelů APOE 4 vedla kombi-

nace zvýšené fyzické aktivity, diety s nízko-

kalorickým příjmem a kognitivního tréninku 

ke zlepšení kognitivních funkcí oproti kont-

rolní skupině [69]. Z těchto výsledků je pa-

trno, že jedinci ve zvýšeném riziku rozvoje 

AN mohou svým životním stylem toto riziko 

snižovat.  

Ovšem jinak je tomu u polymorfizmu 

v genu pro BDNF. Uvažuje se, že příznivý 

efekt fyzické aktivity na mozek a kognici je 

mediován skrze zvýšenou expresi BDNF pro-

teinu během cvičení, a to zejména v ob-

lasti hipokampů, kde přispívá k neuroge-

nezi a synaptické plasticitě [70]. Benefi t pro 

mozek a kognici však přináší fyzická aktivita 

zřejmě pouze nositelům nerizikové BDNF 

Val alely. Pouze u fyzicky aktivních BDNF Val 

nositelů byly pozorovány zvýšené hladiny 

BDNF proteinu a zároveň výrazně lepší vý-

sledky v testech epizodické paměti v po-

rovnání se stejně aktivními nositeli rizikové 

Met alely [71]. Podobné výsledky zazname-

nala intervenční studie s pacienty ve stadiu 

MCI. Po absolvování 16týdenního tréninku 

bylo pozorováno signifi kantní zvýšení hladin 

tohoto proteinu pouze u nositelů BDNF Val, 

a nikoliv u nositelů rizikové Met alely. Nebyl 

sice pozorován žádný efekt na kognici [72], 

přesto se na základě znalostí efektu BDNF na 

mozkové funkce dá předpokládat, že u pa-

cientů s vyšší hladinou BDNF proteinu bude 

konverze do syndromu demence pomalejší. 

Dosud ale není známa studie, která by tuto 

hypotézu ověřila v longitudinálním sledo-

vání. Zdá se tedy, že zvýšení exprese BDNF 

při pohybové aktivitě naráží na určité limity 

v závislosti na daném polymorfi zmu, a tak 

jedinci s rizikovou alelou nemohou fyzic-

kou aktivitou kompenzovat sníženou pro-

dukci BDNF. Zvyšování hladin BDNF je po-

zorováno také při praktikování jógy nebo 

meditace [73], které jsou známy pro své 

neuroprotektivní účinky a prevenci kogni-

tivního deficitu [74]. Není ale známa stu-

die, která by tyto aktivity měřila ve vztahu 

k polymorfi zmům.

Sdělení výsledků genetického 
vyšetření
Znalost polymorfi zmu v genu pro APOE po-

skytuje lékaři důležitou informaci o prav-

děpodobnosti rozvoje AN. Stanovení APOE 

polymorfi zmu se ale v běžné klinické praxi 

nedoporučuje a je určeno spíše pro vědecké 

účely vzhledem k tomu, že se jedná o rizi-

kový a nikoliv determinační faktor onemoc-

nění [75]. Informování pacientů také může 

vést k následnému ovlivnění jejich stíž-

ností, kognitivní výkonnosti i změnám život-

ního stylu. Nedávná studie naznačila, že ko-

gnitivně zdraví stárnoucí nositelé APOE 4, 

kteří znali svůj genotyp, subjektivně hodno-

tili svou paměť jako horší a zároveň skórovali 

v testech paměti výrazně hůře než nositelé 

APOE 4, kteří tuto informaci nevěděli [76]. 

To může částečně souviset s faktem, že zna-

lost nositelství 4 vede u jedinců k většímu 

stresu během kognitivního testování [77]. 

Přesto se neprokázalo, že by tato informace 

vedla k vyšší depresivní nebo úzkostné sym-

ptomatice [77], naopak vedla ke zlepšení ži-

votního stylu. U nositelů APOE 4 se téměř 

3× zvýšila pravděpodobnost zvýšení fyzické 

aktivity, zdravějšího stravování a užívání vita-

minů [78]. Proto je na lékařském úsudku, zda 

informaci o genotypu pacientovi sdělit. 

Závěr
Genetika v mnoha oblastech medicíny de-

terminuje vznik onemocnění. Ačkoliv u AN 

s pozdním počátkem takový gen nemáme, 

může nám genetický skríning poskytnout 

důležité informace o nástupu a prognóze 

onemocnění. Rutinní stanovení APOE ani 

BDNF polymorfizmu není zatím součástí 

českých doporučených postupů pro dia-

gnostiku AN z roku 2007 [79], ale my jej po-
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važujeme za významný faktor pro predikci 

kognitivního defi citu u pacientů ve zvýše-

ném riziku rozvoje AN, zejména v kombinaci 

s dalšími rizikovými genetickými [58] nebo 

metabolickými bio markery AN [80]. V souvis-

losti se současným vývojem nových farma-

kologických terapeutických intervencí také 

znalost genetického polymorfi zmu výrazně 

přispěje k přesnější identifi kaci vhodných je-

dinců pro včasnou léčbu. Specifi cky stano-

vení APOE polymorfi zmu poskytne lékařům 

informaci o pravděpodobnosti rozvoje AN 

a stanovení polymorfi zmu BDNF o rychlosti 

její progrese. Znalost obojího zároveň po-

může doporučit účinnou intervenci. Přes-

tože znalost nositelství rizikových genetic-

kých polymorfi zmů u jedinců ovlivňuje míru 

stížností i paměťové výkony, zároveň tato 

informace může vést ke zlepšení životního 

stylu jedince, a tím snížit riziko rozvoje AN 

nebo oddálit nástup prvních obtíží.

Konfl ikt zájmů

Autoři deklarují, že v souvislosti s předmětem studie 

nemají žádný konfl ikt zájmů. 
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