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Friedreichova ataxie

Friedreich’s ataxia

Souhrn
Friedreichova ataxie je autozomálně recesivně dědičné multisystémové onemocnění, které 

fi guruje v neurologickém povědomí již více než 160 let. Jeho genetická podstata byla odhalena 

v roce 1996 a od té doby je vynakládáno značné úsilí na objasnění funkce produktu mutovaného 

genu FXN – frataxinu. Cílem je najít optimální bio logickou či genovou léčbu této jinak 

nezadržitelně progredující choroby, invalidizující nositele bialelické mutace v řádu let od počátku 

onemocnění. V současnosti je k dispozici první léčivo schválené cíleně pro Friedreichovu ataxii, 

další jsou v různých stadiích klinických studií. Tato skutečnost vede ke zcela jinému pohledu na 

nutnost včasné dia gnostiky choroby na úrovni analýzy DNA; je třeba revidovat nálezy u pacientů 

s progredující ataxií, u nichž zatím nebyla molekulárně-genetická dia gnostika provedena, a cíleně 

na možnost Friedreichovy ataxie pomýšlet i u pacientů s kardiomyopatií či progredující skoliózou. 

Článek shrnuje dosavadní poznatky o Friedreichově ataxii, upozorňuje na nově objevené příznaky 

choroby i aktuální poznatky ohledně metabolizmu frataxinu. V závěru jsou shrnuty současné 

směry výzkumu cílené léčby.

Abstract
Friedreich’s ataxia is an autosomal recessive inherited multisystem disorder that has been in 

neurological awareness for more than 160 years. Its genetic basis was discovered in 1996, and since 

then considerable eff orts have been made to elucidate the function of the product of the mutated 

FXN gene – frataxin. The goal is to fi nd an optimal bio logical or gene therapy for this otherwise 

relentlessly progressive dis ease, which disables the carrier of the biallelic mutation within a few 

years of the dis ease onset. Currently, the fi rst drug is available, approved specifi cally for Friedreich’s 

ataxia, while others are in various stages of clinical trials. This fact leads to a completely diff erent 

view of the necessity of early dia gnosis of the dis ease at the level of DNA analysis; it is necessary 

to revise the fi ndings in patients with progressive ataxia in whom the molecular genetic dia gnosis 

has not yet been performed, and to consider specifi cally the possibility of Friedreich’s ataxia also in 

patients with cardiomyopathy or progressive scoliosis. The article summarizes current knowledge 

about Friedreich’s ataxia, draws attention to the newly discovered symptoms of the dis ease, and 

provides insights into the metabolism of frataxin. In conclusion, the current directions of targeted 

treatment research are summarized.
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Úvod
Friedreichova ataxie (FA) je autozomálně re-

cesivně dědičné onemocnění, které způ-

sobuje progresivní ataxii, dysartrii, poru-

chu polohocitu a vibračního čití, ale i řadu 

dalších neurologických či jiných somatic-

kých příznaků, které se mohou manifesto-

vat během vývoje onemocnění. Není však 

výjimkou, že skolióza nebo kardiomyopa-

tie může předcházet neurologické manifes-

taci [1]. Progrese choroby způsobuje v řádu 

let až desítek let poruchu mobility, příčinou 

smrti mohou být častěji než v běžné popu-

laci srdeční selhání, dále závažný diabetes 

mellitus či výrazná progrese neurologických 

projevů [2–7].

Onemocnění bylo popsáno Nikolausem 

Friedreichem v roce 1861. Jeho genetická 

podstata (amplifi kace guanin-adenin-ade-

nin [GAA] v 1. intronu genu FXN uloženém 

na dlouhém raménku 9. chromozomu) byla 

nalezena o 135 let později, v roce 1996 [8]. 

V posledních letech byly učiněny velké po-

kroky ve studiu produktu postiženého 

genu – frataxinu. Jedná se o mitochon-

driální protein hrající roli v mitochondriální 

bio genezi Fe-S klastrů a tím sekundárně 

v redoxní katalýze, betaoxidaci lipidů, re-

gulaci genové exprese a v opravě/replikaci 

DNA [9–12].

Poznámky z historie
Friedreichova ataxie je onemocnění známé 

od 18. září roku 1861, kdy německý patolog 

a neurolog profesor Nikolaus Friedreich pre-

zentoval na Kongresu německých přírodo-

vědců a lékařů prvních šest pacientů (bratr 

a sestra z jedné rodiny a čtyři sourozenci 

z rodiny druhé – tři sestry, jeden bratr) s ob-

tížemi začínajícími kolem puberty [13]. Zpo-

čátku u nich dominovaly ataxie, dysartrie, 

postupně se rozvíjely porucha čití, svalová 
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slabost, skolióza, deformity nohou a u ně-

kte rých byla přítomna kardiomyopatie. Pří-

znaky lokomotorické ataxie se značně lišily 

od případů, které dva roky předtím popsal 

pod stejným názvem jako samostatnou jed-

notku Duchenne [14]. Diskuze ohledně ob-

sahu výrazu „lokomotorická ataxie“ pokračo-

vala řadu let a účastnila se jí řada předních 

vědců a lékařů té doby – např. Eisenmann, 

Hasse, Kussmaul, Virchow, Mobius, Grasset, 

Strumpel, Gowers, Charcot aj. [15].

Friedreich sledoval své pacienty po dobu 

14 let, u čtyř z nich provedl patologicko-ana-

tomické autopsie. Rozpoznal axonální zten-

čování dorzálních míšních kořenů, popsal 

atrofi zaci nuclei gracilis i drobné léze fas-

ciculi anterolaterales, degenerující vlákna 

v corpores restiformes. Na základě svých po-

zorování a vyšetření poté publikoval v letech 

1863–1877 celkem pět prací, avšak stěžejní 

byla jeho poslední práce z roku 1877 a její 

postscriptum ze stejného roku [16]. Během 

let sice postupně krystalizoval obraz bu-

doucí samostatné nozologické jednotky, 

avšak tehdejší, ještě zdaleka ne rozvinuté 

neuroanatomické poznatky i omezené vyše-

třovací možnosti mu neumožnily postihnout 

všechny aspekty onemocnění. Friedreich se 

zpočátku domníval, že se jedná o důsledky 

chronické spinální leptomeningitidy, teprve 

v roce 1876 zvažuje na základě rodinných 

anamnéz i možnost dědičného onemoc-

nění; dědičnost však spojoval pouze s nále-

zem abnormálně tenkých axonů kmene, což 

považoval za vrozenou patologii a dispozici 

k zánětlivému onemocnění míchy. V prv-

ních pracích ještě nebyla uvedena absence 

šlachosvalových refl exů, kterou popsal v roce 

1875 jeho žák Wilhelm Heinrich Erb [17]. Ač-

koliv Friedreich velice usiloval o zlepšení dia-

gnostiky a léčby onemocnění míchy a jeho 

práce obsahovaly podrobný makroskopický 

a mikroskopický popis postižených míšních 

struktur, musel čelit řadě názorů, že se nejedná 

o novou samostatnou chorobu, ale nejspíše 

o případy lues či RS. Teprve v roce 1882 shr-

nuli Augus Brousse et al. dosavadní poznatky 

o onemocnění prezentovaném Friedreichem 

a zdůraznili, že se jedná o samostatnou jed-

notku, pro kterou navrhli název Friedreichova 

ataxie [18]. Ten se však plně ujal až v roce 1884, 

dva roky po Friedreichově smrti, kdy Charcot 

při své přednášce v Salpêtrière prezentoval 

mladého pacienta s dědičnou ataxií a uznal, 

že se jedná o speciální případ lokomotorické 

ataxie, která je sice velmi podobná RS, ale zá-

roveň i velmi odlišná – a také on ji nazýval 

Friedreichovou ataxií [19].

Během dalších let se nové poznatky o FA 

objevovaly sporadicky. Nelze však pominout 

práci Hardingové z roku 1981, velmi pečlivě 

klinicky zpracovaný soubor 115 pacientů 

z 90 rodin, který už jasně potvrzoval autozo-

málně recesivní dědičnost [17]. Na objasnění 

mutace však bylo třeba počkat ještě dalších 

15 let. V roce 1996 publikovali Campuzanová 

et al. přelomový článek, ve kterém popsali 

intronovou GAA repeatovou expanzi v genu 

X25 na 9. chromozomu [8]. Přesto je zajímavé, 

že dle publikačních dat v MedLine bylo v le-

tech 1993–2011 (v průběhu 18 let) publiko-

váno stále pouze 39 prací s touto tematikou, 

teprve od roku 2012 se začíná zájem o Fried-

reichovu chorobu oživovat a za posledních 

12 let již na heslo „Friedreich‘s ataxia“ vy-

hledá MedLine 673 výsledků.

Na rozdíl od řady jiných, zejména autozo-

málně dominantně dědičných ataxií, jejichž 

jména v genetické éře s objevem kauzálních 

mutací zanikla, Friedreichova ataxie přetr-

vala již více než 160 let; v ně kte rých aspek-

tech sice stále odolává našemu poznání, ale 

soustředěné celosvětové úsilí nyní vede k cí-

lené bio logické léčbě a na genové terapii se 

také intenzivně pracuje.

Prevalence
Friedreichova ataxie je onemocnění ozna-

čované jako vzácné, tedy ve smyslu mezi-

národně uznané dohody postihuje méně 

než 5 osob/10 000 obyvatel. Nejčastěji uvá-

děné odhady prevalence FA jsou mezi 

2–4/100 000 obyvatel, ačkoli primární zdroje 

těchto výpočtů často nejsou explicitně uve-

deny [20]. Toto číslo je hluboko pod pra-

hem stanoveným předpisy o léčivech pro 

vzácná onemocnění jak Evropě, tak ve Spo-

jených státech amerických, i když publiko-

vaná data jsou zřejmě zatížena ně kte rými 

chybami. Jednou z nich je širší současné kli-

nické spektrum molekulárně-geneticky dia-

gnostikovaných pacientů, než byla původně 

udávaná klinická kritéria, což může vést 

k podhodnocení počtu dia gnostikovaných 

pacientů. Prevalence je také ovlivňována po-

zorností, jaká se v určité populaci onemoc-

nění věnuje.

Friedreichova ataxie je nejčastější dědičná 

ataxie, která představuje přibližně 50 % 

všech případů ataxie a přibližně 75 % u pa-

cientů mladších 25 let [21]. Přehled výskytu 

FA v evropských zemích, který zpracovali 

Vankan et al. v roce 2013, odhalil, že preva-

lence FA v Evropě vykazuje velké regionální 

rozdíly s gradientem prevalence od západu 

na východ. Nejvyšší úrovně jsou pozorovány 

v severním Španělsku, na jihu Francie a Irska, 

nejnižší úrovně ve Skandinávii [22]. V ČR je 

současná incidence 1/200 000 obyvatel.

Ve světě je FA v kavkazké populaci rozšíře-

nější než v kterékoli jiné rase a předpokládá 

se, že mutace pochází od společného evrop-

ského předka [23,22]. Její manifestace je na-

lézána u pacientů pocházejících z Evropy, se-

verní Afriky, Středního východu nebo Indie. 

V USA se vyskytuje u bělochů s průměrnou 

prevalencí 3–4 na 100 000 případů [24–27]. 

Případy jsou velmi řídce pozorovány v subsa-

harské Africe, Číně, Japonsku a jihovýchodní 

Asii [20]. Frekvence přenašečů FA se odha-

duje na 1 ze 75 lidí [27].

Patofyziologie
V současnosti je FA ještě stále ně kte rými au-

tory řazena mezi onemocnění neurodege-

nerativní, i když by jí, jak bylo nastíněno výše, 

již řadu let slušelo označení onemocnění 

neurogenetické a v posledních letech s no-

vými poznatky o funkci frataxinu i onemoc-

nění neurometabolické.

Základním problémem je relativní ne-

dostatek produktu genu FXN, tedy frata-

xinu. Hned v úvodu je třeba podotknout, že 

všechny fyziologické funkce frataxinu i do-

pady jeho porušeného metabolizmu sice 

pomáhají objasnit patofyziologii FA, avšak 

výzkum není zdaleka dokončen.

Deplece frataxinu vzniká v důsledku mu-

tace genu FXN, která je z 96 % způsobena 

zmnožením repetic GAA na obou alelách, 

ve 4 % se na patologii podílí bodové mutace 

či delece genu FXN na jedné z alel. Všechny 

mutace způsobují snížení (nikoliv chybění!) 

celkové hladiny funkčního frataxinu.

Zjednodušeně lze říci, že v historické po-

sloupnosti bylo při studiích buněčných tkání 

a modelů nejprve zjištěno, že se frataxin 

podílí na mitochondriální homeostáze že-

leza [28], a teprve pokračování této linie vý-

zkumu obrátilo pozornost k poklesu Fe-S 

klastrových enzymů – a to jak mitochondriál-

ních, tak i extramitochondriálních [28–33]. 

Fe-S klastry se nachází v mitochondriích, cy-

tosolu, endoplazmatickém retikulu a jádře. 

Přispívají k dýchání, homeostáze železa, bio-

syntéze hemu, oxidativní fosforylaci, cyklu 

kyseliny citronové a replikaci či opravě DNA 

i regulaci dalších drah. Jsou např. využívány 

jadernými DNA polymerázami a heliká-

zami [34–36], cytosolovými enzymy – např. 

inhibitor RNázy L1 (RNase L Inhibitor 1; Rli1) 

a adenosintrifosfatázou (ATPázou) zapoje-

nou do syntézy proteinů [37] i enzymy mi-

tochondriálními, kde jsou kofaktory řady en-
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zymů se základními funkcemi v produkci ATP 

či funkcích Krebsova cyklu [38–40].

Jakýkoli defekt v jejich bio syntéze vede tedy 

k četným metabolickým defektům vč. globální 

mitochondriální dysfunkce [29,41,42]. Je ovliv-

něna produkce energie, zvýšena citlivost na 

oxidativní stres [43], dochází i k sekundárnímu 

poklesu bio syntézy hemu v důsledku defektu 

ferrochelatázy [31,44– 46]. Tato komplexní ne-

rovnováha aktivity vede k tvorbě volných kys-

líkových radikálů jak v mitochondriální matrici, 

tak v cytosolu, což ústí v depleci glutathionu 

a zvýšené peroxidaci lipidů [9].

U pacientů s FA se předpokládalo, že oxi-

dativní stres je důsledkem produkce reaktiv-

ních forem kyslíku katalyzovaných volným 

železem hromadícím se v mitochondriích 

(Fentonova reakce) a zhoršené signalizace 

oxidačního stresu hlavním regulátorem 

NRF2 (NF-E2 related faktor; faktor související 

s NF-E2; NF-E2 = nuclear factor erythroid 2; 

jaderný erytroidní faktor 2), který umožňuje 

reaktivní formy kyslíku hromadit [11].

Na základě buněčných modelů i studií 

in vivo vč. studií pacientů s FA se však v sou-

časnosti ukazuje, že hlavní roli v patogenezi 

FA může hrát ferroptóza, jeden z relativně 

nově objevených mechanizmů buněčné 

smrti [47]. Ferroptóza je spouštěna akumu-

lací intracelulárního železa (nikoliv jiných 

kovů) a peroxidací lipidů. Je morfologicky, 

bio chemicky a geneticky odlišná od apo-

ptózy, nekrózy a autofagie. Na rozdíl od již 

dříve objevených typů buněčné smrti bylo 

transmisní elektronovou mikroskopií proká-

záno, že pro buňky podléhající ferroptóze 

jsou charakteristické strukturální změny 

s menšími mitochondriemi a se zvýšeným 

mitochondriálním membránovým potenciá-

lem. Chybí klasická kondenzace chromatinu 

typická pro apoptózu či ruptury buněčné 

stěny pozorované u nekrózy [48]. Podrob-

nosti ferroptózy jsou stále předmětem zkou-

mání, ale je již známo, že během poslední 

fáze procesu způsobuje přímá nebo ne-

přímá inaktivace fosfolipidhydroperoxid 

glutathionperoxidázy 4 (GPX4) akumulaci 

peroxidovaných polynenasycených mast-

ných kyselin, což nakonec vede k buněčné 

smrti [49]. Turchi et al. publikovali v roce 

2020 přehledný článek zabývající se typic-

kými markery ferroptózy u FA a konstato-

vali, že příznaky buněčné smrti zprostředko-

vané železem (zvýšená produkce lipidových 

peroxidů a následné zvýšení jejich odvoze-

ných produktů, např. malondialdehydu), byly 

v plazmě pacientů s FA potvrzeny. Kromě 

toho byly u pacientů zjištěny nízké hladiny 

glutathionu a špatná aktivita GPX, zejména 

GPX4, což také potvrzuje souvislost mezi fe-

rroptózou a patofyziologií FA [50].

Kompletizace dosavadních znalostí vedla 

v roce 2013 [51] k závěru, že frataxin není 

obecný zásobní protein vážící železo (jako 

ferritin), jak se v počátcích výzkumu předpo-

kládalo, ale je zapojen přímo do bio syntézy 

Fe-S klastrů a ostatní nalezené, výše zkrá-

ceně popsané patologie jsou přímým dů-

sledkem defektu bio geneze tohoto evo-

lučně velmi starého koenzymu [10,45,52–54].

Základní funkcí frataxinu je tedy pomoci 

vytvořit Fe-S klastr a zabudovat ho do en-

zymů potřebujících tuto prostetickou sku-

pinu [55,56]. Zdá se, že jedinečnou funkcí fra-

taxinu je urychlení klíčového kroku přenosu 

síry mezi dvěma složkami [57].

Primárním místem bio syntézy Fe-S klastrů 

je mitochondrie. Jedná se o složitý proces, ke 

e–

dimer cystein desulfurázy

základní Fe S komplex
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Obr. 1. Biosyntéza Fe-S clastrů – úloha frataxinu (volně podle [57]).
ACP – acylový nosič proteinu; ISD – aktivátor cystein desulfurázy. Jednotlivé kroky biosyntézy jsou popsány v textu.

Fig. 1. Biosynthesis of Fe-S clusters – the role of frataxin (quoted freely according to [57]).
ACP – acyl-carrying protein; ISD – cysteine desulfurase activator. The individual steps of biosynthesis are described in the text.
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kterému je třeba 17 dalších proteinů. Nejprve 

probíhá de novo vytvoření Fe-S klastru na 

skeletovém proteinu. Z něj je poté uvolněn 

a přechodně navázán na specifi cké trans-

portní proteiny, které jej přenesou do cílo-

vých apoproteinů. Zjednodušeně ukazuje 

funkci frataxinu v tvorbě Fe-S klastrů obr. 1 

(volně podle [57]).

Pro první krok bio syntézy železa a síry 

Fe-S (iron-sulfur cluster; ISC) je nezbytný zá-

kladní komplex složený z dimeru cystein de-

sulfurázy (NFS1), přičemž na každou molekulu 

dimeru jsou navázány skafoldový protein 2 

(ISCU2) a komplex dvou regulačních pro-

teinů – aktivátoru cystein desulfurázy (ISD11), 

esenciálního proteinu mitochondriální matrix 

a acylového nosiče proteinu (ACP) [58,59].

Proces tvorby Fe-S komplexu dále vy-

žaduje v tomto prvním kroku účast železa, 

volného cysteinu, komplexu ferredoxin 2 

(FDX2)-ferredoxin reduktázy (FDXR) – re-

dukované formy nikotinamidadenindinuk-

leotidfosfátu (NADPH), darujícího do reakce 

elektrony k redukci síry z cysteinu na sulfi d, 

a frataxinu. Frataxin zprostředkovaně umož-

ňuje převádět cystein na persulfi d a reduko-

vaný ferredoxin 2 redukuje persulfi d na sulfi d, 

což umožní na skafoldovém proteinu vytvo-

ření prekurzoru Fe-S, po dimerizaci [2Fe-2S].

Druhým krokem je přenos skafodového 

proteinu (U typ ISC proteinu, člen 2 [U-type 

ISC protein member 2; ISCU2]) s naváza-

ným 2Fe-2S pomocí chaperonových stre-

Tab. 1. Korelace genotyp/fenotyp Friedreichovy ataxie (volně podle [63]).      

Klinické příznaky

Klinická diagnóza/genetická diagnóza
typická FA/ 

potvrzená FA
počet 29

atypická FA/ 
potvrzená FA

počet 9

typická FA/ 
nepotvrzená FA

počet 3

atypická FA/ 
nepotvrzená FA

počet 61

ČR
potvrzená FA

počet 44

začátek před 25. rokem 29/29 7/9 3/3 14/61 41/44

ataktická chůze 29/29 9/9 3/3 61/61 44/44

ataxie končetin 29/29 9/9 3/3 61/61 44/44

dysartrie 29/29 9/9 3/3 53/61 41/44

arefl exie dolních končetin 29/29 3/9 3/3 10/61 35/44

axonální senzitivní neuropatie 19/19 8/8 2/2 15/20 –

pozitivní příznak Babinského 29/29 7/9 3/3 25/61 40/44

snížení vibračního čití (méně než 6/8) 25/27 5/9 3/3 33/50 40/44

atrofi e optiku 0/12 1/9 0/3 2/9 34/44 (dle OCT)

snížená zraková ostrost 2/23 0/9 0/3 1/15 9/44

nystagmus 10/27 4/9 3/3 26/42 17/44

square wave jerks 21/26 3/9 0/3 0/33 36/44

vestibulo-okulární refl ex 11/26 4/9 1/2 19/28 –

porucha sluchu 9/19 2/9 0/3 7/41 8/44

dysfagie 20/26 5/7 0/3 24/43 31/44

oslabení dorzální fl exe nohou 21/26 3/9 3/3 9/42 33/44

amyotrofi e (svaly nohou) 13/21 2/9 3/3 10/41 19/44

inkontinence 4/26 0/8 0/3 19/41 22/44

skolióza 23/24 4/8 1/3 3/38 38/44

deformity nohou 25/29 6/9 2/3 12/40 33/44

diabetes 0/26 2/9 0/3 1/21 4/44

inverze vlny T na EKG 23/26 6/9 0/3 0/23 –

hypertrofi cká neobstruktivní kardiomyopatie dle EKG 19/24 5/8 0/3 0/10 28/44

abnormality EKG nebo ECHO 26/27 6/9 0/3 0/25 30/44

prodloužené centrální motorické vedení na MEP 7/7 5/5 0/2 1/14 –

atrofi e krční míchy dle MR 10/10 6/9 1/2 1/15 –

atrofi e mozečku dle MR 5/10 3/9 2/2 11/15 –

tučně: esenciální diagnostická kritéria dle Hardingové (1981) [17]

šedý sloupec: k orientačnímu srovnání kumulativní data pacientů s verifi kovanou FA v ČR   

FA – Friedreichova ataxie; EKG – elektrokardiografi e; ECHO – echokardiografi e; MEP – motorické evokované potenciály; N – neuvedeno; 

OCT – optická koherentní tomografi e
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sových proteinů rodiny A člen 9 (heat-shock 

protein family A member 9; HSPA9) a HSCB 

(heat-shock cognate B) do mitochondriál-

ních klientských proteinů nebo na akcepto-

rové proteiny, jako jsou např. glutaredoxin 5 

(GLRX5) nebo typ A Fe-S klastrového pro-

teinu (A-type ISC protein; ISCA) a dalších.

Třetím krokem je zrání klastrů [2Fe-2S] 

na [4Fe-4S] v mitochondriích a následné 

dodání do mitochondriálních klientských 

proteinů.

Čtvrtým, zatím předpokládaným, kro -

kem je export neznámé prekurzorové mo-

lekuly (X) generované cestou bio syntézy 

Fe-S do cytoplazmy prostřednictvím ABC 

transportéru z podrodiny B člen 7 (ATP-

-binding cassette sub-family B member 7; 

ABCB7) a dalších složek. Nakonec je tato 

prekurzorová molekula zpracována ces-

tou cytosolového seskupení Fe-S proteinu 

(cytosolic iron-sulfur protein assembly; 

CIA), aby dozrála a dodala Fe-S klientským 

proteinům [60].

Klinický obraz
V době před objevem molekulárně gene-

tické podstaty FA byl pro stanovení dia-

gnózy kladen velký důraz na splnění tzv. 

dia gnostických kritérií. V roce 1976 rozdělili 

Geoff roy et al. skupinu 50 sledovaných pa-

cientů na čtyři skupiny [61]:

Ia – typická FA s kompletním obrazem:

•  obligatorní kritéria: začátek obtíží před 

koncem puberty a nikdy po 20. roku věku, 

ataxie, progrese ataxie v posledních 2 le-

tech bez remise, dysartrie, porucha polo-

hocitu a vibračního čití na dolních konče-

tinách, oslabení svalové síly, šlachosvalové 

arefl exie na dolních končetinách;

•  další časté progresivní symptomy, jejichž 

přítomnost není nutná ke stanovení dia-

gnózy: pozitivní příznak Babinského, pes 

cavus, skolióza, kardiomyopatie.

Ib – typická FA s nekompletním obrazem:

klinický obraz a vývoj onemocnění identický 

se skupinou Ia, avšak chybí pes cavus.

IIa – atypická FA: liší se od skupiny Ia poma-

lou progresí ataxie a velmi mírným stupně 

skoliózy.

IIb – jiná onemocnění.

Jak je patrno z dnešního pohledu, při apli-

kaci těchto kritérií muselo nutně dochá-

zet k podhodnocení počtu pacientů a lépe 

tomu nebylo ani o několik let později, v roce 

1981, kdy Hardingová publikovala rozsáhlou 

klinickou studii na 115 pacientech. U všech 

se jednalo o progredující onemocnění, věk 

nástupu příznaků byl u všech nižší než 25 let 

(průměrně 10,5 roku). Jedinými konstant-

ními příznaky v prvních 5 letech od manifes-

tace byly ataxie trupu a končetin a arefl exie 

dolních končetin. Dysartrie, postižení cent-

rálního motoneuronu, porucha polohocitu 

a vibračního čití se rozvinuly během života 

u všech, ale ne nutně v prvních pěti letech. 

Skolióza a kardiomyopatie byly nalezeny 

u více než dvou třetin pacientů. Pes cavus, 

distální amyotrofie, optická atrofie, nystag-

mus a hluchota byly méně časté. Asi 10 % 

pacientů mělo diabetes mellitus – dle vý-

sledků studie byl častěji spojen s výskytem 

atrofi zace optiku a s poruchou sluchu [17].

Po nalezení kauzálního genu pro FA [8] 

mohlo konečně dojít k porovnání klinic-

kých a molekulárně-genetických nálezů. 

První komplexní a z hlediska dia gnostiky 

FA převratnou práci v tomto směru publi-

kovali Alexandra Durrová et al. hned v roce 

1996. Analyzovali DNA 187 pacientů s po-

čátkem onemocnění mezi 2–51 lety. I když 

z této kohorty splňovalo klinická kritéria dle 

Hardingové pouze 103 pacientů, homozy-

gotní expanze GAA repeatů mělo 140 pa-

cientů. Ukázalo se tedy, že zhruba čtvrtina 

pacientů s typickou mutací měla atypický 

klinický nález – u 19 pacientů začínalo one-

mocnění až po 25. roku věku, u 13 pacientů 

byly patrné výbavné šlachosvalové refl exy, 

u 4 z nich dokonce zvýšené, u 21 pacientů 

nebyl nalezen pozitivní příznak Babinského, 

u dalších 10 pacientů byla analýza DNA pro-

vedena i přesto, že nebyli dosud sledováni 

požadovaných 5 let a jejich klinický obraz byl 

nekompletní [62].

V roce 1997 navazuje kolektiv Ludgera 

Scholse [63] dalším souborem 102 pacientů 

s progresivní ataxií z 92 nepříbuzných rodin. 

V souboru bylo dle dia gnostických kritérií 

Hardingové 32 pacientů s typickým obra-

zem a 70 pacientů s atypickým fenotypem 

– ti byli rozděleni do tří skupin – 21 pacientů 

s časnou mozečkovou ataxií, 34 pacientů 

s idiopatickou cerebelární ataxií a 15 pa-

cientů s multisystémovou atrofií. Je zajímavé, 

že ze 32 pacientů s jasně typickým obra-

zem byla nalezena kauzální mutace v genu 

FXN jen u 27 z nich. Naopak navzdory aty-

pickému klinickému obrazu byla dia gnóza 

na molekulárně genetické úrovni potvr-

zena i u poloviny atypických případů s čas-

ným nástupem ataxie. Celkově byla FA po-

tvrzena u 24 % atypických případů. Tab. 1 je 

velice užitečná i z dnešního pohledu na indi-

kace DNA analýzy u pacientů s progresivní 

ataxií a jasně ukazuje, že použití pouze typic-

kých příznaků dle Hardingové nestačí a způ-

sobuje relativně velké číslo nezachycených 

pozitivních pacientů s FA. K orientačnímu 

srovnání jsou v posledním sloupci uvedena 

ně kte rá kumulativní data pacientů s verifi ko-

vanou FA v ČR.

Durrová et al. [62] již v roce 1996 jasně pou-

kazovali na nutnost sledovat a molekulárně-

-geneticky vyšetřovat i pacienty s atypickým 

průběhem. Uměle byla vytvářena další indi-

kační kritéria pro DNA analýzu genu FXN pa-

cientů s progresivní ataxií s cílem nejvyšší 

výtěžnosti pozitivních výsledků. Zajímavá je 

Tab. 2. Srovnání diagnostických kritérií Friedreichovy ataxie (volně podle [64]).  

Quebecká studie Friedreichovy ataxie (1976) [61] Hardingová (1981) [17] Filla et al. (1996) [117]

začátek před 20. rokem začátek před 25. rokem začátek před 20. rokem

progresivní ataxie progresivní ataxie progresivní ataxie

arefl exie dolních končetin arefl exie dolních končetin arefl exie dolních končetin

jeden z následujících:

• dysartrie

• pozitivní příznak Babinského

• hypertrofi e levé srdeční komory

dysartrie dysartrie po 5 letech

slabost pozitivní příznak Babinského

snížené vibrační čití snížený nebo chybějící senzorický akční potenciál
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kým rizikem“ (přibližně 80 %) s normální 

ejekční frakcí, která pomalu klesala a zů-

stala v normálním rozmezí, a skupinu „s vy-

sokým rizikem“ (přibližně 20 %), u které 

ejekční frakce klesla do abnormálního roz-

sahu a byla spojena s vysokou mortali-

tou [80]. „Vysoce riziková“ skupina je spo-

jena s delšími expanzemi GAA na kratší 

alele, nikoliv s délkou trvání onemocnění 

či progresí neurologického obrazu one-

mocnění. Elektrokardiografie (EKG) je v na-

prosté většině abnormální, nejčastěji jsou 

pozorovány inverze vlny T, odchylka levé 

osy a abnormality repolarizace [79].

Kardiomyopatie se může projevit, do-

konce i v těžké formě, před nástupem neu-

rologických příznaků [81,82]. Arytmie (ze-

jména fibrilace síní) a městnavé srdeční 

selhání se často vyskytují v pozdějších fázích 

onemocnění. Může se objevit onemocnění 

koronárních tepen a mělo by být zváženo 

v případě anginy pectoris a/ nebo náhlého 

zhoršení srdeční funkce [5,83]. Transplan-

tace srdce je jednou z možností, jak u pa-

cientů se závažnou kardiomyopatií zlepšit 

kvalitu života a prodloužit život. Zkušenosti 

s dlouhodobým přežitím (5, 8 a 19 let) pa-

cientů s FA po transplantaci srdce publiko-

vali v roce 2017 McCormick et al. [84]. V ČR 

byla transplantace srdce u pacientky s FA 

provedena před 16 lety [85], v době, kdy ji 

selhání srdce bezprostředně ohrožovalo 

na životě. Po 3 měsících po transplantaci 

byla schopna mírně ataktické chůze bez 

opory. Onemocnění sice pozvolna progre-

dovalo, ale v roce 2017 porodila zdravého 

syna, gravidita nezhoršila ani neurologický 

nález, ani kardiální funkce. V současné době 

musí používat vozík, avšak plně zvládá péči 

o syna. Těhotenství obecně nezhoršuje stav 

pacientek s FA, nebyl zjištěn zvýšený počet 

spontánních potratů či předčasných po-

rodů, preeklampsie nebo porodu císařským 

řezem [86].

• Diabetes mellitus vzniká u pacientů s FA 

nejspíše v důsledku defektů v účinku in-

zulinu a/nebo snížené sekrece inzulinu 

z  buněk pankreatu. Je pravděpodobné, 

že se oba tyto mechanizmy na patogenezi 

podílejí, přičemž předpokladem glukózové 

intolerance je dysfunkce  buněk v dů-

sledku mitochondriální dysfunkce a stresu 

endoplazmatického retikula [87,88]. Zatím 

není zcela jasné, proč se diabetes rozvine 

jen u části pacientů s FA. Incidence dia-

betu je u FA udávána v rozmezí 6–19 % [7], 

v práci Hewera z roku 1968 to bylo dokonce 

23 % [89], v ČR 5/44 (11 %).

čeno ortézou a 16 vyžadovalo operaci 

páteře [68]. Autonomní obtíže se vysky-

tují častěji až v pokročilejších stadiích, pa-

cienty obtěžují zejména chladná akra dol-

ních končetin s cyanózou; bradykardie je 

méně častá.

• Poruchy řeči a  polykání se v různém 

stupni projevují u všech pacientů s FA [69]. 

Dysartrie se s progresí onemocnění zhor-

šuje, dochází ke zpomalení řeči a zkracuje 

se doba, po kterou je pacient schopen 

mluvit [70]. Někdy je pozorována i mírná 

dysfonie [71]. Většina pacientů udává v po-

kročilejších stadiích problémy s polykáním 

v důsledku orofaciální dyskoordinace [72].

•  Porucha dýchání ve spánku a spán-

ková apnoe jsou u pacientů s FA častější 

než u zdravé populace. Corbenová na-

lezla u pacientů s FA 21% obstrukční spán-

kové apnoe ve srovnání s cca 5% incidencí 

v běžné populaci [73].

• Pacienti s FA si většinou nestěžují na po-

ruchu zraku. Přesto u zhruba čtvrtiny 

pacientů je atrofie zrakového nervu 

při oftalmologickém vyšetření potvr-

zena [74,75]. Dle studie Fortuny et al. 

z roku 2009 bylo zjištěno, že pouze 19 % 

z těchto pacientů mělo subjektivní ob-

tíže [76,77]. Subklinickou atrofi i optického 

nervu lze v současné době dobře verifi ko-

vat optickou koherentní tomografií (op-

tical coherence tomography; OCT), která 

prokazuje sníženou průměrnou tloušťku 

peripapilární vrstvy nervových vláken (re-

tinal nerve fi ber layer; RNFL) u většiny pa-

cientů. Na rozdíl od neuropatií zrakového 

nervu u jiných mitochondriálních one-

mocnění je u FA zachován papilomaku-

lární svazek, což vede k lepší zrakové os-

trosti. Ukazuje se, že pro jednoduchou 

detekci subklinické neuropatie zrakového 

nervu je užitečnější vyšetření kontrastní 

citlivosti než zrakové ostrosti či perime-

tru [78]. Shrnutí neuro-oftalmických pří-

znaků ukazuje obr. 2.

•  Postižení srdce, kardiomyopatie, vzniká 

důsledkem mitochondriální proliferace, 

ztráty kontraktilních proteinů a násled-

ného rozvoje myokardiální fi brózy. Na zá-

kladě pomocných vyšetřovacích metod 

je prokazatelná u více než dvou třetin pa-

cientů s FA. Dochází ke koncentrické/asy-

metrické hypertrofi i nebo dilataci stěny 

levé komory, přičemž dilatační kardio-

myopatie s arytmií je ve srovnání s hyper-

trofi ckou kardiomyopatií častěji spojena 

s mortalitou [79]. Longitudinální studie 

identifi kovala dvě skupiny; skupinu „s níz-

práce Fillova et al. z roku 2000 [64], ve které 

porovnávali výtěžnost dia gnostických kritérií 

Hardingové [17], kritéria použitá v quebecké 

studii (Quebec Cooperative study of Fried-

reich ataxia; QCSFA) [61] a kritéria používaná 

Fillovou skupinou (tab. 2).

Výsledky ukázaly, že nejvíce pacientů lze 

zachytit za použití Fillových kritérií (senziti-

vita 77 %, prediktivní hodnota 96 %). Kritéria 

dle Hardingové  QCSFA mají nižší senzitivitu 

(obojí 63 %) a srovnatelnou prediktivní hod-

notu (96/98 %).

V současnosti je obecně přijímáno, že ma-

nifestace FA nastupuje sice nejčastěji mezi 

10.–15. rokem věku, avšak byli popsáni pa-

cienti s nástupem obtíží mezi 1.–2. rokem, ale 

také až v 8. dekádě, takže věk nástupu obtíží 

není stěžejním dia gnostickým kritériem.

• Nejčastějším prvním neurologickým 

příznakem bývá ataktická chůze v dů-

sledku zhoršené propriocepce, což si pa-

cient zpočátku většinou neuvědomuje, 

někdy může udávat např. pocit vertiga 

na vrcholu schodiště. Nejistota se prohlu-

buje při vyřazení zraku, takže někteří pa-

cienti zaznamenají jako první příznak po-

ruchu orientace při nočním vstávání. 

V neurologickém nálezu tomu odpovídá 

pozitivní Rombergův příznak, často se již 

v počátečních stadiích objevují snížení 

šlachosvalových refl exů na dolních kon-

četinách a pozitivní pyramidové jevy iri-

tační. Další progrese onemocnění je indi-

viduální, většinou se udává, že do 5 let od 

začátku onemocnění jsou již patrny dysar-

trie, slabost dolních končetin, zhoršení po-

lohocitu, zejména na dolních končetinách 

a porucha vibračního čití tamtéž. Jedná se 

o důsledek progresivní degenerace dor-

zálních kořenových ganglií, zadních pro-

vazců míšních, dorzální spinocerebelární 

dráhy v kombinaci s postižením pyrami-

dové dráhy a cerebella. Postižení perifer-

ních senzitivních a motorických neuronů 

vede ke smíšené axonální periferní neu-

ropatii. Pes cavus je běžný (55 %), ale vět-

šinou nezpůsobuje pacientům výrazný 

problém. Více obtěžující je v pozdních sta-

diích onemocnění progredující equinova-

rózní či jiná deformita někdy znemožňující 

stoj a chůzi [65,66]. Syndrom neklidných 

nohou je běžný u jedinců s FA; postihuje 

podle Frauschera 32–50 % jedinců [67]. 

Skolióza je přítomna přibližně u dvou tře-

tin jedinců s FA při klinickém hodnocení 

a ve 100 % při rentgenovém hodnocení. 

Milbrandtova studie zjistila, že 49 ze 77 je-

dinců s FA mělo skoliózu; deset bylo lé-
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Teprve možnost stanovení dia gnózy 

FA hmatatelným výsledkem analýzy DNA 

umožnila najít další pacienty s touto choro-

bou, ně kte ré však s  atypickým obrazem

nesplňujícím plně kritéria Hardingové.

Prvním odlišujícím znakem byl poz-

dější nástup onemocnění, proto se pro 

tyto atypické formy u pacientů s manifes-

tací prvních příznaků mezi 26.–39. rokem 

vžilo označení late-onset FA (LOFA), pro pa-

cienty se začátkem onemocnění po 40. 

roce pak very late-onset FA (VLOFA). Nej-

starší pacientka začala mít dysartrické obtíže 

v 80 letech [102].

Ukazuje se, že pozdější nástup onemoc-

nění většinou koreluje s délkou kratší muto-

vané alely [103,104].

Dalším atypickým obrazem je FA s  vý-

bavnými refl exy (Friedreich‘s ataxia with re-

tained refl exes; FARR), a to většinou po dobu 

delší než 10 let od počátku onemocnění. Re-

fl exy jsou obvykle dobře výbavné až zvý-

šené, někdy je patrný klonus. Tito pacienti 

mívají pozdější věk nástupu prvních pří-

znaků a netrpí závažnější kardiomyopatií či 

skoliózou [105,106].

jich společenské uplatnění. V souboru 

44 podrobně sledovaných českých pa-

cientů je 11 pacientů s dokončeným stře-

doškolským a 9 s vysokoškolským vzdělá-

ním. Naeijeho metaanalýza kognitivního 

profilu z 18 prací publikovaných v le-

tech 1950–2021 sledovala výsledky pa-

cientů v oblasti pozornosti/výkonu, ja-

zyka, paměti, vizuálně-prostorových 

funkcí, emocí a sociálně-kognitivních vý-

konů. Celkem 13 studií uvádělo význam-

nou souvislost se závažností onemoc-

nění, šest studií uvádělo souvislost mezi 

kognitivní výkonností a změnami v cere-

bellu [96]. Bylo prokázáno, že motorické 

i mentální reakční časy mohou být u pa-

cientů s FA významně prodlouženy [97,98], 

stejně tak je výrazně narušeno moto-

rické plánování [99], zhoršena je schop-

nost tvorby konceptů a vizuoprostoro-

vého uvažování se sníženou rychlostí 

zpracování informací [100]. Prokázáno 

bylo i zhoršení inhibice a kognitivní fl exi-

bility [101]. Výsledky jsou v souladu s ce-

rebelární rolí v patofyziologii kognitivních 

poruch FA.

Dalšími problémy, na které si pacienti 

s FA stěžují a které ovlivňují kvalitu jejich ži-

vota, jsou postupná ztráta sluchu, močové 

problémy a v neposlední řadě i problémy 

kognitivní.

• Porucha sluchu bývá pacienty s FA větši-

nou prezentována jako problém s komu-

nikací v hlučnějším prostředí nebo pokud 

mluví více lidí najednou [90]. Při vyšetření 

sluchu je většinou nacházena normální 

funkce středního ucha a hlemýždě, avšak 

patologie je detekována na úrovni slucho-

vého nervu [91]. Tomu odpovídají i histo-

logické nálezy závažné degenerace slu-

chových a vestibulárních neuronů [92]. 

Progrese sluchových obtíží koreluje s cel-

kovou progresí onemocnění [93].

• Symptomy močového měchýře vč. frek-

vence močení a urgence byly hlášeny po-

měrně často, zhruba mezi 40–80 % je-

dinců, jako velice obtěžující je hodnotila 

necelá třetina pacientů [94,95].

• Pacienti s FA vykazují výrazně nižší vý-

kony v určitých kognitivních doménách 

ve srovnání s kontrolními účastníky, které 

však překvapivě většinou neomezují je-

Obr. 2. Neuro-oftalmické příznaky u Friedreichovy ataxie (volně podle [75]).
OCT – optická koherentní tomografi e 

Fig. 2. Neuro-ophthalmic symptoms in Friedreich´s ataxia (quoted freely according to [75]).
OCT – optical coherence tomography
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mocnění způsobeno expanzí GAA repetic 

v prvním intronu FXN (X25) genu na obou jeho 

alelách, což vede ke snížení transkripce mRNA 

pro frataxin na přibližně 10 % normálních hod-

not [56]. Zbývající 4 % pacientů jsou složení 

heterozygoti, kdy na jedné alele mají expanzi 

GAA repetic a na druhé alele je přítomna buď 

bodová mutace, nebo delece genu FXN, což 

také vede ke snížení exprese frataxinu nebo 

změně jeho funkce, a tím obvykle i k mírně od-

lišnému klinickému obrazu.

Normální chromozomy mají 7–34 repeatů 

GAA, zatímco chromozomy u pacientů s FA 

nesou 66 až > 1 700 tripletů, což v různé 

míře narušuje transkripci frataxinu. U pa-

cientů s FA byl prokázán 65–95% pokles fra-

taxinu, zatímco heterozygotní přenašeči mí-

vají kolem 50 % normálních hladin frataxinu 

a jsou bez klinických symptomů [114].

U zbývajících 4 % pacientů s FA je na 

jedné alele typická repeatová mutace, dru-

hou mutací je bodová mutace nebo de-

lece. I v tomto případě dochází k nedostatku 

funkčního frataxinu. Již byla publikována 

úmrtí byla kardiomyopatie (38/61), zbytek 

(17/61) byl nekardiální (nejčastěji zápal plic) 

nebo byla příčina neznámá (6/61) [27,83].

Laboratorní a neurozobrazovací 
dia gnostické metody
Dia gnózu FA lze stanovit pouze na základě 

molekulárně-genetického testování. Klinický 

obraz a laboratorní metody mohou sice 

k rychlejší aplikaci genetického testování na-

pomáhat, avšak v současnosti mají význam 

spíše výzkumný při objasňování detailního 

obrazu FA, využitelného k cílené léčbě. Na 

druhou stranu je třeba ataktického pacienta 

v úvodní fázi komplexně vyšetřovat k vy-

loučení zejména získané příčiny udávaných 

symptomů, jak ukazuje obr. 3.

Laboratorní metody

Genetická dia gnostika

Friedreichova ataxie je autozomálně recesivní 

onemocnění vznikající výlučně mutací v genu 

FXN, což vede ke snížení hladin funkčního pro-

teinu frataxinu. U 96 % pacientů s FA je one-

Fenotypickou variantou FA může být 

i spastická paraparéza bez nápadnějších 

známek ataxie. Byli popsáni pacienti s nástu-

pem příznaků mezi 25–35 lety, jejichž expan-

dované alely obsahovaly mezi 131–156 re-

peaty [107], nebo pacient, compound 

heterozygot s missense variantou p.Gly-

130Val [108]. Na zkoumání dalších v součas-

nosti zatím nedetekovatelných mutací přímo 

v genu FXN stejně jako na hledání variant 

v nekódujících oblastech genomu, které by 

mohly poskytnout vysvětlení atypického 

průběhu, se intenzivně pracuje [109].

Rychlost progrese FA je variabilní. Prů-

měrná doba od nástupu symptomů do 

závislosti na invalidním vozíku je deset 

let [110,111]. Řada studií zjistila, že progrese 

je rychlejší u pacientů s dřívějším nástupem 

onemocnění [95,112,113].

Ve studii provedené na počátku 80. let 

byl průměrný věk při úmrtí 37 let [17]. V no-

vější studii byly průměrný a střední věk úmrtí 

36,5 let, resp. 30 let a bylo zdokumentováno 

přežití do 6. a 7. dekády. Nejčastější příčinou 

A BPACIENT

instabilita p i ch zi, pocit nejistoty,
n kdy prezentovaný jako závra ,
inten ní, ale i statický t es,
zhoršení výslovnosti

ANAMNÉZA, NEUROLOGICKÉ VYŠET ENÍ
cerebelární syndrom
± syndrom zadních provazc míšních
± vestibulární syndrom
± syndrom centrálního motoneuronu
± syndrom periferního neuronu
± kardiomyopatie, skolióza

Základní biochemická
vyšet ení
(+ imunoglobuliny,
Cu, ceruloplasmin,
vitamin E, B12,
laktát, pyruvát,
alfa fetoprotein…)

Základní
elektrofyziologická a další
vyšet ení dle klinického stavu
EKG, EMG, EEG, SEP, BAEP,
VEP, ENG, MEP,
UZ b icha,
o ní vyšet ení…

Neurozobrazovací
vyšet ení
MR (CT)

Vyšet ení
mozkomíšního
moku

Psychologické
vyšet ení

vylou ení získaného onemocn ní (akutní/chronické p íznaky),
event. nasm rování další diferenciální diagnostiky

GENETICKÁ DIAGNOSTIKA

Obr. 3. Základní vyšetřovací postup u ataktického pacienta.
BAEP – kmenové sluchové evokované potenciály; EKG – elektrokardiografi e; ENG – elektronystagmografi e; MEP – motorické evokované po-

tenciály; SEP – somatosenzorické evokované potenciály; VEP – zrakové evokované potenciály

Fig. 3. Basic examination procedure in an ataxic patient.
BAEP – brainstem auditory evoked potential; EKG – electrocardiography; ENG – electronystagmography; MEP – motor evoked potentials; 

SEP – somatosensory evoked potential; VEP – visually evoked potentials
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genové testování [133,135,136]. Konzistent-

ním nálezem bylo ztenčení krční míchy [137]. 

Atrofie mozečku a mozkového kmene byla 

variabilnější, ale v novějších studiích snímky 

jasně potvrzují degeneraci horních cerebe-

lárních pedunkulů [138] obsahujících vět-

šinu eferentních vláken nuclei dentati. Hy-

pointenzita nuclei dentati na T2 vážených 

snímcích (související se železem) může být 

při vysoké intenzitě magnetického pole po-

tenciálním bio markerem FA [139].

Pro kvantifi kaci rozsahu neurodegenerace 

jsou výtěžné zejména difuzí vážené snímky 

(diffusion weighted imaging; DWI) hod-

notící molekulární funkce a mikroarchitek-

turu nervové tkáně, která je dle nejnovějších 

studií patrně postižena více, než bylo dříve 

popisováno [140].

Podrobné shrnutí neurozobrazovacích 

nálezů u FA lze nalézt v práci Luisy Selva-

durai et al. z roku 2018 [134]. Histologicky 

zjištěné změny míchy ve smyslu ztenčení 

a předozadního zploštění v důsledku atrofi -

zace vzestupných dorzálních drah (fascicu-

lus gracilis a cuneatus) a spinocerebelárního 

traktu spolu s descendentním kortikospi-

nálním traktem byly MR studiemi potvr-

zeny také in vivo. Patologie ascendentního 

systému zřejmě vzniká v důsledku transsy-

naptické anterográdní atrofi zace v důsledku 

primární patologie v dorzálních kořeno-

vých gangliích. Tím je narušen přenos infor-

mací o hlubokém čití, vibracích a proprio-

cepci do mozečku a mozkové kůry [141,142]. 

Postižení kortikospinálního traktu vzniká 

v důsledku sníženého počtu Betzových 

buněk v motorické kůře, atrofizace korti-

kospinální dekuzace v medulárních pyra-

midách [15] a ztráty axonů a myelinu v pá-

teřní části traktu s maximem v oblasti hrudní 

míchy [143]. Postižení tractus corticospinalis 

způsobuje snížení svalové síly a hyperrefl e-

xii, později u FA překrytou postižením peri-

ferního motoneuronu [143,144].

Dalším typickým nálezem na MR, který 

potvrzuje histologické nálezy zmenše-

ných nuclei dentati se ztrátou velkých 

neuronů [145,146], jsou kvantitativní stu-

die odhalující kromě atrofizace i abnor-

mity v redistribuci železa [147]. Kromě toho 

byla potvrzena i redukce bílé hmoty neje-

nom cerebella, ale i mozku a struktur pro-

pojujících mozek s nižšími mozkovými etá-

žemi [135,148]. Nejvýraznější změny byly 

nalezeny ve spinocerebelárních, cerebelo-

-talamo-cerebrálních drahách a radiatio 

optica. Zajímavé, i když logické vzhledem 

k ubikvitní potřebě frataxinu ve všech mito-

ných nervových vláken v dorzálních kořenech 

a periferních senzitivních nervech, tak i v zad-

ních provazcích míšních [15,122]. Klasický nález 

hypo- až arefl exie šlachosvalových refl exů je 

přičítán porušení dostředivé části refl exního 

oblouku, avšak ně kte ré elektromyografické 

nálezy nevylučují mírné postižení i předních 

rohů míšních, které může vést k chronické de-

nervaci [15,123]. Studie rychlosti nervového 

vedení u FA většinou ukazují rychlost vedení 

motorickým nervem vyšší než 40 m/ s se sní-

ženým nebo chybějícím akčním potenciá-

lem senzorického nervu s chybějícím H re-

fl exem [124,125]. U pacientů, u kterých bylo 

možné zaznamenat při SEP i centrální odpo-

vědi, byla rychlost vedení většinou lehce al-

terována do úrovně mozkového kmene, 

ale jasné snížení bylo patrné od kmene do 

kortexu [125,126].

Také doba centrálního motorického ve-

dení při transkraniální magnetické stimulaci 

(motor evoked potential; MEP) je prodlou-

žená a zhoršuje se s progresí onemocnění, 

což koresponduje s nálezy na MR – viz dále. 

Na základě novějších studií zahrnujících děti 

mohou ně kte ré abnormality MEP předchá-

zet klinické manifestaci [127,128].

Stejně tak vyšetření sluchových evokova-

ných potenciálů (brainstem auditory evoked 

potential; BAEP) vykazuje jasně patologické, 

avšak nespecifické změny [129,130]. U FA 

byly prokázány oba základní mechanizmy, 

kterými dochází k narušení nervové aktivity 

ve sluchovém mozkovém kmeni – snížení 

počtu aktivovaných sluchových nervových 

vláken (deaferentace) i snížení stupně ner-

vové synchronie (dyssynchronie) [131].

V poslední době se znovu věnuje větší po-

zornost vyšetření zrakové dráhy [75,77,131], 

protože s pokročilejšími metodami lze veri-

fi kovat jak ztenčení vrstvy nervových vláken 

sítnice, tak i vláken v optickém nervu. Tato 

skutečnost koreluje jak s nálezy na elektro-

retinogramu, tak i zrakových evokovaných 

potenciálech [76].

Zobrazovací metody

Na rozdíl od elektrofyziologických metod 

jsou v současnosti neustále se zdokonalující 

neurozobrazovací techniky významným po-

mocníkem – sice také nikoliv při dia gnostice 

onemocnění, ale při objevování komplex-

nějších znalostí o zapojení nervového sys-

tému u této nemoci [133,134].

Zobrazování morfologie

Magnetická rezonance byla v dia gnostice FA 

používána ještě před tím, než bylo k dispozici 

řada bodových mutací genu FXN s různými 

dopady na klinický obraz a průběh onemoc-

nění –  Galea et al. rozdělili soubor 111 com-

pound heterozygotů na tři podskupiny zalo-

žené na patogenní neexpanzní variantě: (1) 

nulová varianta (neprodukuje se frataxin), (2) 

střední/ silný vliv na funkci frataxinu a (3) mi-

nimální vliv na funkci frataxinu [115]. Ve srov-

nání s pacienty s bialelickou expanzí GAA 

měla podskupina 1 dřívější nástup a vyšší vý-

skyt diabetu mellitu, avšak minimální kardio-

logické příznaky. Studie Greeleye et al. zjistila 

téměř desetinásobný nárůst diabetu mellitu 

u složených heterozygotů ve srovnání s kla-

sickou bialelickou repeatovou formou [116].

Hladiny reziduálního frataxinu jsou ur-

čeny velikostí repetice GAA menší ze dvou 

alel. Velikost menší expanze GAA statis-

ticky koreluje s věkem na počátku onemoc-

nění, závažností neurologických příznaků 

a kardiomyopatií [117].

Výzkumy ukazují, že dynamická mu-

tace, tedy zmnožení GAA repeatů, se může 

měnit při přenosu od rodičů na potomky. 

K prodloužení expandovaných alel může 

dojít při přenosu od matky, většinou se ne-

jedná o počet větší než 200 GAA, protože 

delší alely mají tendenci ke kontrakci. Při pře-

nosu od otce může dojít i ke zkrácení pro-

longovaného úseku. Somatická instabilita 

u FA začíná zřejmě již po raném embryo-

nálním vývoji a pokračuje v průběhu ži-

vota [118]. Je zajímavé, že počty repeatů ve 

fi broblastech mají tendenci k regresu, za-

tímco v lymfocytech, kořenových gangliích 

a mozečku se počet s věkem zvyšuje, což 

koreluje s progresí neurologických příznaků 

s věkem [119].

Praktická poznámka: Při podezření na 

FA může zaslat kterýkoliv lékař 4 ml krve 

v K3EDTA (trojdraselné soli kyseliny ethylen-

diamintetraoctové) spolu se žádankou do 

genetické laboratoře Ústavu biologie a lé-

kařské genetiky 2. LF UK a FN Motol, v Úvalu 

84/1, 150 06 Praha 5.

Elektrodia gnostické nálezy

V době před nalezením kauzální mutace 

byly elektrofyziologické studie hojně využí-

vány ke zpřesnění dia gnostiky, avšak ukázalo 

se, že se jedná o nálezy nespecifi cké, na kte-

rých stanovení dia gnózy nelze stavět.

U FA jsou primárně poškozeny velké i malé 

neurony zadních míšních ganglií [120]. Před-

pokládá se, že jde spíše o vývojovou hypo-

plazii než degeneraci, ale výzkumy nejsou 

ještě ukončeny [121]. Důsledkem selhání tro-

fi cké podpory je jak nedostatek myelinizova-
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zobrazování nejenom morfologie, ale také 

bio chemických pochodů, které se v tkáních 

odehrávají. V případě FA nás zajímá přede-

vším metabolizmus mitochondriální. Sou-

časné technologie nejsou zatím schopny 

detekovat přímo produkci ATP, avšak jsou 

již k dispozici jiné markery – např. pyruvát, 

laktát, glutamát, kyselina gamaaminomá-

selná (GABA) [156]. Magnetická rezonanční 

spektroskopie (MRS) může stanovit množ-

ství myoinositolu a N-acetylaspartátu (NAA) 

jako kvantifikátoru patologických změn 

in vivo dokonce dříve, než buněčná těla odu-

mírají [56]. Lze také kvantifi kovat rychlost 

a změny koncentrace železa – výtěžné jsou 

zejména změny v nucleus dentatus cerebelli, 

kde byla v rané fázi onemocnění potvrzena 

atrofi zace s nízkou hladinou železa, následo-

vaná v pozdějších stadiích akumulací železa, 

ale již stabilním objemem jádra [157]. Atrofi -

zace mozečkové struktury v předstihu před 

kumulací železa však naznačuje, že ukládání 

železa je až pozdním důsledkem genetic-

kého defektu, a proto je využití této skuteč-

nosti jako bio markeru sporné.

a cerebellu. Změny postupně progredovaly 

ve smyslu atrofi zace celého cerebella, hor-

ního cerebelárního pedunklu, zadního ra-

ménka capsula interna a horní porce corona 

radiata. Zdá se, že tato data by již mohla být 

využitelná jako bio markery při klinických stu-

diích či zavádění nových léčiv.

Byly navrženy různé hypotézy vysvětlu-

jící tyto nové nálezy – jednou z nich je my-

šlenka, že nalezené změny jsou důsledkem 

neurovývojových změn zakotvených již pre-

natálně. Vychází z toho, že naprostá absence 

frataxinu vede k embryonální smrti [155], 

a nedostatek frataxinu během intrauterin-

ního vývoje tedy ovlivňuje vývoj nervo-

vého systému. V tomto kontextu bychom 

pak mohli na výše uvedené změny pohlí-

žet spíše jako na hypoplazie než atrofie [120] 

či přímo na komplikovaný systém hypo-

plastických a reaktivních regeneračních 

změn.

Zobrazování metabolických funkcí

Pokroky ve studiu metabolizmu i v zobrazo-

vacích technikách vedou k podrobnějšímu 

chondriích, jsou i nálezy poškozených fron-

tookcipitálních fascikulů [149] stejně jako cor-

pus callosum [150,151]. Zatím se však jedná 

o pilotní nálezy, které je třeba upřesnit vzhle-

dem k nehomogenitě sledovaných souborů 

– zejména v počtu GAA repeatů a pokroči-

losti onemocnění.

Jiné práce [152] nalezly funkční i struk-

turální změny v šedé hmotě mozku 

i míchy [153] pacientů s FA, a to jak v kůře, tak 

podkorové šedi. Zatímco strukturální změny 

se týkají úbytku mozkových buněk, funkční 

zobrazení ukazuje jak zvýšení, tak i snížení 

mozkové aktivace. Jedná se o změny difuzní, 

neumožňující zatím nalézt konkrétní vzo-

rec pro využití v detekci či progresi onemoc-

nění [134]. Jedna z posledních prací zabýva-

jících se touto problematikou [154] sledovala 

3 roky pacienty v počátečním věku 11–26 let, 

zhruba 1,5–9 let po začátku onemocnění. 

Pomocí multimodálního zobrazovacího pro-

tokolu byly nalezeny makrostrukturní změny 

mozku ve smyslu nižšího objemu bílé, avšak 

nikoliv šedé hmoty. Mikrostrukturální změny 

byly potvrzeny zejména v pyramidové dráze 

DISCOVERY
(Finding Potential
Therapies/Drugs)

PRE CLINICAL
DEVELOPMENT

(Testing in Laboratory)

FIRST
REGULATORY

FILING

PHASE I
(Human

Safety Trial)

AVAILABLE
TO PATIENTS

PHASE II
(Human Safety

And Efficacy Trial)

PHASE III
(Definitive Trial)

Modulation of Frataxin Controlled
Metabolic Pathways

Frataxin Replacement,
Stabilizers, or Enhancers

Increase FA gene Expression

Gene Editing

Improve
Mitochondrial

Function& Reduce
Oxidative Stress

FRIEDREICH’S ATAXIA DRUG DEVELOPMENT PIPELINE 
REGULATORY
APPROVAL

CTI 1601, frataxin replacement

DT 216P2, Gene TAC

Vatiquinone (PTC 743) 15 LO inhibitor PTC Therapeutics

Stealth Biotherapeutics & Children’s Hospital of PhiladelphiaElamipretide

NAD+ and Exercise in FA (ExRx in FA)

FA AAV

Children’s Hospital of Philadelphia

Larimar Therapeutics

Design Therapeutics

Prime Medicine

SKYCLARYS™ (omaveloxolone) – Nrf2 Activator

PPL 001 HSPC FXN

LX2006, cardiac

Ex vivo Cell Therapy

Gene Replacement

UCSD & Papillon Therapeutics

Lexeo Therapeutics & Weill Cornell

ASP2016, cardiac Astellas

Voyager / Neurocrine

Dimethyl fumarate University Federico II, Naples, Italy

FA 212

© 2024 Friedreich’s Ataxia Research Alliance. All rights reserved.

Updated August 2024

Biogen

Obr. 4. Přehled aktuálních výzkumných projektů zaměřených na léčbu Friedreichovy ataxie. Dostupné z [174].
Jednotlivé cesty výzkumu jsou probrány v textu.

Fig. 4. An overview of current research projects aimed at the treatment of Friedreich‘s ataxia. Available from [174].
Individual research paths are discussed in the text.
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Tyto metody však nejsou klíčové pro sta-

novení dia gnózy, na jejich optimalizaci a hle-

dání dalších podrobností metabolizmu se 

pracuje zejména z důvodu hledání spoleh-

livých markerů účinnosti zaváděné cílené 

léčby a/nebo nalezení léčby nové s cílem 

obnovení hladiny frataxinu [111,158,159]. 

Léčba
Základní léčbou byla dosud léčba sympto-

matická, tedy snaha o ovlivnění progredu-

jících klinických příznaků FA tak, jak byly 

uvedeny v předchozím textu. I když v sou-

časnosti je již dostupná první cílená farma-

kologická léčba, je samozřejmě nutné v sym-

ptomatické terapii paralelně pokračovat.

Nezbytná je multioborová péče, tedy 

pravidelné sledování a léčba obtíží neuro-

logem, kardiologem, ortopedem, fyziotera-

peutem, logopedem, ergoterapeutem, psy-

chologem, event. psychiatrem a v případě 

rozvoje cukrovky i diabetologem. Dle dal-

ších obtíží se na léčbě podílí oční lékař, uro-

log, otolaryngolog.

Názory na rehabilitaci [160–163] jsou jed-

notné v tom smyslu, že se doposud jedná 

o nejúčinnější metodu s prakticky žádnými 

nežádoucími účinky, která zpomaluje pro-

gresi onemocnění, zachovává co nejdéle 

mobilitu a soběstačnost, ale zlepšuje i ná-

ladu a celkovou pohodu pacientů. Nicméně 

záleží na intenzitě a pravidelnosti cvičení 

a je nezbytný odborný dohled. Jako mini-

mální délka intenzivní pobytové rehabilitace 

jsou udávány 4 týdny, lépe hodnoceny jsou 

alespoň 6týdenní rehabilitační cykly. V této 

souvislosti je třeba upozornit na objektivní 

i subjektivní překážky dlouhodobějších re-

habilitačních pobytů. Studie Milneové z roku 

2018 chvályhodně poukazuje na úskalí, která 

mohou pacientovi rehabilitaci znemožnit –

např. vzdálenost specializovaného pracovi-

ště, cestovní náklady, pracovní a rodinná si-

tuace [162]. K tomu je třeba připočíst aktuální 

psychický stav pacienta a jeho obavy ze se-

beobsluhy v neznámém prostředí.

Cvičební program by měl zahrnovat pře-

devším postupy k ovlivnění mozečkových 

příznaků a míšní symptomatiky s cílem zlep-

šit každodenní nezávislé fungování, snížit 

únavu a bolest, chránit před svalovou sla-

bostí, osteoporózou, kontrakturami kloubů 

a snížit riziko pádu. Při sestavování rehabili-

tačního programu je nutné brát v úvahu zvý-

šenou unavitelnost pacientů. Účinnější jsou 

častější, ale kratší cvičební jednotky. Hlavní 

pozornost je věnována ovlivnění opěrné i cí-

lené motoriky, zlepšení pohybové koordi-

nace, nácvik u taxe a ovlivnění intenčního 

třesu. Pro stabilizaci trupové stability jako 

předpokladu cíleného pohybu je vhodná 

Vojtova metoda, teprve poté následuje ná-

cvik fázických pohybů končetin. Volí se pře-

devším cvičení podle Frenkela (cviky k ree-

dukaci normálních pohybů pacientů s ataxií) 

a Feldenkraise (nácvik pomalých repetitiv-

ních cílených pohybů). U pacientů s defor-

mitami páteře se kromě Vojtovy metody 

zařazuje i cvičení dle Klappa, Schrottové 

a provádí se respirační fyzioterapie. Kardio-

logická kondiční cvičení je třeba předepi-

sovat a sledovat s ohledem na základní sr-

deční onemocnění pacienta. Od určitého 

stupně postižení je potřeba aplikovat po-

můcky umožňující zlepšit pacientovu sta-

bilitu – hole, berle, chodítka. Zde je třeba 

postupovat přísně individuálně; vzhledem 

k ataxii může u ně kte rých pacientů jedno-

bodová opora paradoxně vyvolat zhoršení 

stability. Nedílnou součástí je logopedie se 

snahou o ovlivnění cerebelární sakadické ex-

plozivní řeči i dysfagie a ergoterapie, usilující 

o to, aby pacientova soběstačnost a zvládání 

aktivit všedního dne byly co nejlepší [163].

Pokroky ve farmakologické terapii

Zároveň s pokrokem ve studiu patofyziolo-

gických procesů způsobených nedostatkem 

frataxinu byla testována řada látek ovlivňují-

cích jednak funkci mitochondriálního respi-

račního řetězce, jednak inhibujících tvorbu 

volných radikálů [164].

Jedním ze slibných léků byl idebenon, 

syntetický analog koenzymu Q10. Bylo pro-

vedeno mnoho studií [165–168], které však 

jednoznačně nepotvrdily ani zlepšení klinic-

kého stavu, ani patologii myokardu. Stejně 

neúspěšné byly studie s karnitinem [169,170], 

zlepšujícím průnik mastných kyselin do mi-

tochondrie, či deferipronem [171,172], lékem 

snižujícím hladinu železa v organizmu. Stu-

die řady dalších léčiv (amantadin, interfe-

ron gama, inhibitory histondeacylázy, in-

zulin/inzulin-like růstový faktor 1 atd.) byly 

celkově nepřesvědčivé, ať již pro malý počet 

pacientů, či malé/žádné zlepšení klinického 

stavu. Souhrnně jsou uvedeny v review Tanyi 

Arancové et al. z roku 2016 [21].

Obrázek 4 upozorňuje na průběžně aktua-

lizované stránky Friedreich‘s Ataxia Research 

Alliance (FARA), zaměřené na aktuální akti-

vity směřující k nalezení terapie FA.

I v současnosti probíhá řada studií zamě-

řených na optimalizaci metabolizmu poru-

šeného nedostatkem frataxinu jako zásad-

ního agens pro vznik Fe-S klastrů potřebných 

v mnoha dalších mitochondriálních i cyto-

plazmatických reakcích:

• Zlepšení funkce mitochondrií a snížení 

oxidačního stresu

Omaveloxolone – malá molekula, ak-

tivující transkripci genu NRF2, který regu-

luje produkci antioxidačních a protizánět-

livých proteinů. Zatím jediný lék schválený 

FDA (Food and Drug Administration, Úřad 

pro kontrolu potravin a léčiv USA) a EMA (Eu-

ropean Medicines Agency, Evropská léková 

agentura [174, 175].

Vatiquinone, alfa-tokotrienol chi-

none (mezinárodní nechráněný název pro 

EPI-743 Edison Pharmaceuticals/BioElectron 

[Mountain View, CA, USA]) – orálně bio-

logicky dostupná molekula vyvíjená pro 

dědičná metabolická mitochondriální one-

mocnění. Prostřednictvím NADPH chinon 

oxidoreduktázy 1 (NQO1) posiluje syntézu 

glutathionu, sloučeniny nezbytné pro kon-

trolu oxidačního stresu [176]. Navazuje na 

studii s EPI-A0001, tedy -tokoferyl chino-

nem [6]. Jeho účelem je zlepšit funkci mito-

chondrií a buněk pomocí enzymu 15-lipoxy-

genázy ovlivňující ferroptózu.

•  Modulace metabolických cest ovláda-

ných frataxinem

Leriglitazon (PPAR- nebo PPARG; pe-

roxisome proliferator-activated receptor 

gamma, receptor gama aktivovaný peroxi-

somovým proliferátorem) je selektivním 

agonistou receptoru gama aktivovaným pe-

roxisomovým proliferátorem, který prochází 

hematoencefalickou bariérou a v preklinic-

kých modelech zlepšuje mitochondriální 

funkci a produkci energie [177].

Dimetyl fumarát a jeho aktivní meta-

bolit monometyl fumarát vedou ke zmír-

nění a omezení rozsahu poškození myelinu 

a neuronů, a to cestou nukleárního faktoru 

NRF2 [178].

• Zvýšení dostupnosti frataxinu – stabi-

lizátory frataxinu nebo zvyšování jeho 

hladiny

CTI-1601 – rekombinantní fúzní protein 

určený k dodání lidského frataxinu do mito-

chondrií pacientů s FA. Léčivo určené ke zvý-

šení hladin frataxinu u pacientů s FA. Cílem 

je nahradit chybějící frataxin dodáním syn-

tetické verze frataxinu s nosiči umožňujícími 

nejprve vstup do buněk a následně vstup do 

mitochondrií [179].

Etravirin – nenukleosidový inhibitor re-

verzní transkriptázy, v řadě zemí schválený 

jako léčivo na infekci HIV (human immuno-
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ATP – adenosintrifosfát 

CIA – cytosolový protein vytvářející a shromažďující Fe-S 

klastry (cytosolic iron-sulfur protein assembly) 

EMA – Evropská léková agentura (European Medici-

nes Agency)

EFACTS – Evropské konsorcium Friedreichovy ataxie pro 

translační studie (European Friedreich‘s Ataxia Consor-

tium for Translational Studies) 

FA – Friedreichova ataxie

FARA – Výzkumná aliance Friedreichovy ataxie (Friedrei-

ch‘s Ataxia Research Alliance) 

FARR – FA s výbavnými refl exy (Friedreich‘s ataxia with 

retained refl exes) 

FARS/mFARS – Škála pro hodnocení Friedreichovy ata-

xie / modifi kovaná FARS (Friedreich‘s Ataxia Rating Scale 

/ modified FARS)

FDA – Úřad pro kontrolu potravin a léčiv (Food 

and Drug Administration) 

FDX2 – ferredoxin 2

FDXR – ferredoxin reduktáza

Fe-S – seskupení železa a síry potřebné k funkci mnoha 

enzymů

FXN – název genu kódujícího protein frataxin

GAA – triplet guanin-adenin-adenin

GABA – kyselina gamaaminomáselná

GLRX5 – glutaredoxin 5

GPX – glutathionperoxidáza

GPX4 – glutathionperoxidáza 4

HIV – virus lidské imunitní nedostatečnosti (human im-

munodefi ciency virus) 

HSCB – heat-shock cognate B

HSPA9 – stresový protein rodiny A člen 9 (heat-shock 

protein family A member 9) 

ICARS – Mezinárodní kooperativní ataktická škála 

(The International Cooperative Ataxia Rating Scale)

ISC – seskupení železa a síry (iron-sulfur cluster) 

ISCA – A typ ISC proteinu (A-type ISC protein) 

ISCU2 – U typ ISC proteinu, člen 2 (U-type ISC protein 

member 2) 

ISD11 – aktivátor cystein desulfurázy; esenciální protein 

mitochondriální matrix 

K3EDTA – trojdraselná sůl kyseliny ethylendiamintetra-

octové

LOFA – FA s pozdním nástupem (late-onset FA)

MRS – magnetická rezonanční spektroskopie

NAA – N-acetylaspartát

NADPH – redukovaná forma nikotinamidadenindinuk-

leotidfosfátu

NF-E2 – jaderný erytroidní faktor 2 (nuclear factor ery-

throid 2) 

NFS1 – cystein desulfuráza

NQO1 – chinon oxidoreduktáza 1

NRF2 – gen regulující produkci antioxidačních a protizá-

nětlivých proteinů

NRF2 – faktor související s NF-E2 (NF-E2 related faktor)

OCT – optická koherentní tomografie (optical coherence 

tomography) 

PPAR- = PPARG – gama receptor aktivovaný peroxiso-

movým proliferátorem (peroxisome proliferator-activa-

ted receptor gamma) 

Rli1 – inhibitor RNázy L1 (RNase L inhibitor 1)

RNFL – peripapilární vrstva nervových vláken (retinal 

nerve fi ber layer)

SARA – Škála pro posouzení a hodnocení ataxie (Scale 

for the Assessment and Rating of Ataxia)

VLOFA – FA s velmi pozdním nástupem (very late-on-

set FA)

X25 – dříve používaný název genu kódujícího protein 

frataxin

Finanční podpora

Grantová agentura UK; projekt č. 226423: Prospek-

tivní sledování pacientů s Friedreichovou ataxií v ČR 

vč. longitudinálního hodnocení hladiny sérových 

0 bodů (žádná ataxie) do 40 (velmi těžká ata-

xie). Validita škály byla a je studována v řadě 

prací, jednou z posledních je článek publiko-

vaný v roce 2023 v rámci the European Frie-

dreich‘s Ataxia Consortium for Translational 

Studies (EFACTS) [187]. Další škálou, o které 

se v současné době diskutuje ve spojitosti 

se sledováním výsledků inovativních terapií 

FA, je Friedreich‘s Ataxia Rating Scale/modi-

fied FARS (FARS/mFARS). Jedná se o vyšet-

ření, které podrobně hodnotí kromě postu-

rální a statické stability, koordinace horních 

a dolních končetin, řečových funkcí, senziti-

vity (periferní neuropatie) a svalové síly hor-

ních a dolních končetin i autonomní dys-

funkce [188]. Vzhledem k pracnosti a výrazně 

vyšší časové náročnosti je užívána převážně 

u klinických studií, nikoliv k testování již za-

vedených léčiv či jiných léčebných postupů. 

Protože validita a srovnatelnost výsledků 

škálování mezi různými soubory pacientů 

je u všech testů výrazně ovlivněna zkuše-

ností vyšetřujícího, je před vlastním vyšetřo-

váním vhodné zaškolení na pracovišti, které 

se touto problematikou již dlouhodobě 

zabývá. 

Závěr
Motto: „Detaily byly přidány nebo změněny 

a ně kte ré fyziologické interpretace navržené 

Friedreichem již nejsou udržitelné, ale hlavní 

klinická a patologická pozorování a myšlenky 

jsou zdravé a trvalé.“ [189]

Friedreichova ataxie je autozomálně rece-

sivně dědičné onemocnění, které více než 

jedno a půl století znali všichni neurologové, 

a přesto nemohli pacientům pomoci. Je za-

jímavé, že základy poznatků o této nemoci 

byly díky Friedreichovým studiím známy již 

od počátku a postupně z nich vykrystalizo-

val obraz nemoci, která sice postihuje pri-

márně nervový systém, ale negativně ovliv-

ňuje i další orgánové soustavy.

Pokroky na všech úrovních poznání vedou 

v současné době k řadě pokusů o zmírnění 

progrese, event. i skutečnému vyléčení na 

úrovni genové terapie. Jak však naznačují 

dílčí poznatky shrnuté v předchozí stati, stále 

zůstává řada neobjasněných bio chemických 

i molekulárně-genetických pochodů, které 

čekají na další objevy.

Seznam zkratek

AAV – adeno-asociovaný virus (adeno-associated virus) 

ABCB7 – ABC transportér z podrodiny B člen 7 (ATP-bin-

ding cassette sub-family B member 7) 

ACP – acylový nosičový protein (acyl carrier protein)

defi ciency virus). Testován pro potenciální 

schopnost potencovat proces translace, 

který převádí mRNA na frataxin, a tím zvýšit 

jeho hladiny v buňkách [180].

• Zvýšení exprese FXN genu

DT-216P2 – malá molekula navržená tak, 

aby se specifi cky zaměřovala na zmnožení 

repeatů GAA v genu FXN, odblokovala tran-

skripční aparát a obnovila produkci funkční 

frataxinové mRNA [181].

• Genová terapie

Genová terapie je očekávanou léčbou. Po-

kusy o odstranění opakování zmnoženého 

počtu GAA repeatů již byly provedeny po-

mocí technologie CRISPR u myší. U ně kte-

rých buněk srdce a jater byl nadbytečný 

počet úspěšně odstraněn, účinnost však 

byla nízká a nezvyšovala dostatečně frataxin 

v srdci [182]. Další studie z roku 2023 na myším 

modelu a na nehumánních primátech však 

ukázala, že exprese frataxinu z intravenózně 

podaného adeno-asociovaného viru (adeno-

-associated virus; AAV) může množství frata-

xinu k léčbě srdečních symptomů spojených 

s onemocněním dostatečně zvýšit [183]. Je 

však třeba přihlížet i k tomu, že nadměrná ex-

prese frataxinu je toxická a měla by být peč-

livě kontrolována [184]. Přehled dosavadních 

snah i omezení v zavedení genové terapie 

jsou přehledně uvedeny v článku Sivakuma-

rové a Cherquiové z roku 2022 [185].

Závěrem této kapitoly je vhodné zmí-

nit se o mezinárodně diskutovaných šká-

lách analyzujících tíži a progresi cerebelár-

ních symptomů, event. dalších projevů jak 

FA, tak i ostatních chorob ataxií se projevu-

jících. Obecně lze říci, že se jedná o vyšet-

ření nadstandardní, v běžné praxi vyšetřují-

cího neúměrně zatěžující, nicméně v oblasti 

výzkumu a v době očekávání různých cíle-

ných léčiv se jedná o jedinou možnost, jak 

přirozený průběh onemocnění i účinnost 

léčby kvantifi kovat. V roce 2006 byla jako al-

ternativa k nejvíce používané, ale rozsáhlé 

škále The International Cooperative Ata-

xia Rating Scale (ICARS) navržena jedno-

dušší klinická Škála pro posouzení a hod-

nocení ataxie (Scale for the Assessment 

and Rating of Ataxia; SARA) [186]. Je zalo-

žena na funkčním hodnocení osmi polo-

žek hodnotících chůzi, stoj, sed, řeč (dysar-

trii), jemnou motoriku rukou (testem stíhání 

cíle a taxí prst–nos), diadochokinesu a taxí 

na dolních končetinách (pata–koleno, skluz 

po holeni). Výsledné skóre se pohybuje od 
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8. Které kardiologické projevy jsou 

obvykle spojeny s Friedreichovou ataxií?

a) kardiomyopatie

b) arytmie

c) arteriální hypertenze

d) kardiomyopatie a arytmie

9. Které oftalmologické nálezy se běžně 

vyskytují u Friedreichovy ataxie?

a) glaukom

b) atrofie optického nervu

c) katarakta

d) retinopatie

10. Kdy je u pacienta indikováno zvážit 

genetické testování na Friedreichovu 

ataxii?

a) u pacientů s progredující ataxií

b)  u pacientů s kardiomyopatií nejasné 

etiologie

c) u pacientů se skoliózou

d) u všech výše uvedených

1. Který neurologický nález není typický 

pro pacienty s Friedreichovou ataxií?

a) myopatie

b) syndrom zadních provazců míšních

c) syndrom periferního motoneuronu

d) syndrom centrálního motoneuronu

2. Jaký je genetický základ Friedreichovy 

ataxie?

a) mutace v genu SOD1

b) mutace v genu FXN

c) mutace v genu HTT

d) mutace v genu APP

3. Který laboratorní test je klíčový pro 

dia gnózu Friedreichovy ataxie?

a) vyšetření alfa fetoproteinu 

a imunoglobulinů

b) molekulárně genetické testování

c) elektromyografi cké vyšetření

d) magnetická rezonance

4. Jak působí omaveloxolon při léčbě 

Friedreichovy ataxie?

a) inhibuje enzym SOD1

b) aktivuje cestu NRF2 proteinu

c) zvyšuje produkci frataxinu

d) snižuje hladinu železa

5. Co je to NRF2?

a)  transkripční faktor, regulující 

produkci antioxidačních a protizánětlivých 

proteinů

b)  receptorový protein aktivující transkripci 

prostřednictvím přímé protein-protein 

interakce s RNA polymerázou

c)  regulační protein, který zprostředkovává 

spojení mezi informační molekulou 

navázanou na membránový receptor 

a buněčným efektorem

d)  enzym katalyzující syntézu RNA 

podle DNA

6. Jakou roli hraje frataxin v buněčném 

metabolizmu?

a) zajišťuje syntézu inzulínu

b)  podílí se na bio syntéze 

Fe-S klastrů

c) ovlivňuje syntézu dopaminu

d) reguluje hladinu glukózy

7. Friedreichova ataxie patří 

mezi choroby:

a) mitochondriální

b) lysozomální

c) peroxisomální

d) žádná odpověď není správná

Vědomostní test

Správně je jedna odpověď

Test můžete vyplnit na:

WWW.CSNN.EU
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