APOE and BDNF as genetic risk markers for predicting the onset and development of cognitive deficits due to Alzheimer’s disease


Authors: K. Čechová 1,2;  Z. Chmátalová 2,3;  V. Matušková 1,2;  V. Maťoška 4;  J. Hort 1,2
Authors‘ workplace: Kognitivní centrum, Neurologická, klinika 2. LF UK a FN Motol, Praha 1;  Mezinárodní centrum klinického, výzkumu, FN u sv. Anny v Brně, Brno 2;  Ústav lékařské chemie a klinické biochemie, 2. LF UK a FN Motol, Praha 3;  Laboratoř molekulární diagnostiky, Nemocnice Na Homolce, Praha 4
Published in: Cesk Slov Neurol N 2020; 83/116(3): 257-262
Category: Review Article
doi: 10.14735/amcsnn2020257

Overview

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is typically initialized by neuronal death in the hippocampus and mediotemporal structures with characteristic episodic memory impairment. However, what is different among AD patients is the age of onset and progression of the disease. It has been suggested that the major modulators of these factors appear to be genetic polymorphisms in apolipoprotein E (APOE) and brain-derived neurotrophic factor (BDNF) genes. APOE e4 allele is the primary genetic determinant of risk for late-onset AD. BDNF Val66Met polymorphism has been shown to alter the risk for developing cognitive impairment and disease progression, both directly and indirectly through an interaction with the APOE genotype. The carriage of both risky variants APOE e4/BDNF Met was associated with episodic memory impairment and faster memory decline compared to the presence of only one or none of these high-risk polymorphisms. This information may be useful for improving the early-detection capability of individuals at risk of developing AD, as well as advancing our understanding of polymorphic combinations that predict the rate of disease progression. Some interventional studies also indicate potential for non-pharmacological interventions in disease prevention in high-risk individuals.

Keywords:

apolipoprotein E – brain-derived neurotrophic factor – Alzheimer’s disease – mild cognitive impairment – gene polymorphisms – cognition


Sources

1. Čechová K, Marková H, Mazancova AF et al. V bludišti jménem Alzheimer. Praha: Albatros media a. s. 2019.

2. Hort J, Glosová L, Vyhnálek M et al. Tau protein a beta amyloid v likvoru u Alzheimerovy choroby. Cesk Slov Neurol N 2007; 70/103 (1): 30–36.

3. Braak H, Thal DR, Ghebremedhin E et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70 (11): 960–969. doi: 10.1097/NEN.0b013e318232a379.

4. Petersen RC. Mild cognitive impairment. N Engl J Med 2011; 364 (23): 2227–2234. doi: 10.1056/NEJMcp0910237.

5. Busse A, Hensel A, Guhne U et al. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 2006; 67 (12): 2176–2185. doi: 10.1212/01.wnl.0000249117.23318.e1.

6. Gao Q, Gwee X, Feng L et al. Mild Cognitive impairment reversion and progression: rates and predictors in community-living older persons in the Singapore longitudinal ageing studies cohort. Dement Geriatr Cogn Dis Extra 2018; 8 (2): 226–237. doi: 10.1159/000488936.

7. Grande G, Cucumo V, Cova I et al. Reversible mild cognitive impairment: the role of comorbidities at baseline evaluation. J Alzheimers Dis 2016; 51 (1): 57–67. doi: 10.3233/JAD-150786.

8. Koepsell TD, Monsell SE. Reversion from mild cognitive impairment to normal or near-normal cognition: Risk factors and prognosis. Neurology 2012; 79 (15): 1591–1598. doi: 10.1212/WNL.0b013e31826e26b7.

9. Jessen F, Amariglio RE, van Boxtel M et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 2014; 10 (6): 844–852. doi: 10.1016/j.jalz.2014.01.001.

10. Markova H, Nikolai T, Mazancova AF et al. Differences in subjective cognitive complaints between non-demented older adults from a memory clinic and the community. J Alzheimers Dis 2019; 70 (1): 61–73. doi: 10.3233/JAD-180630.

11. Reisberg B, Prichep L, Mosconi L et al. The pre-mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimers Dement 2008; 4 (1 Suppl 1): S98–S108. doi: 10.1016/j.jalz.2007.11.017.

12. Hort J, Laczó J, Vyhnálek M. Alzheimerova nemoc. In: Rusina R, Matěj R (eds). Neurodegenerativní onemocnění. Praha: Mladá fronta 2014: 102–112.

13. Laczó J, Andel R, Vyhnalek M et al. APOE and spatial navigation in amnestic MCI: results from a computer-based test. Neuropsychology 2014; 28 (5): 676–684. doi: 10.1037/neu0000072.

14. Laczó J, Andel R, Vyhnalek M et al. The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobio­l Aging 2015; 36 (6): 2024–2033. doi: 10.1016/j.neurobio­laging.2015.03.004.

15. Hort J, Laczo J, Vyhnalek M et al. Spatial navigation deficit in amnestic mild cognitive impairment. Proc Natl Acad Sci 2007; 104 (10): 4042–4047. doi: 10.1073/pnas.0611314104.

16. Corder EH, Saunders AM, Strittmatter WJ et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261 (5123): 921–923. doi: 10.1126/science.8346443.

17. Neu SC, Pa J, Kukull W et al. Apolipoprotein E genotype and sex risk factors for Alzheimer’s disease. JAMA Neurol 2017; 74 (10): 1178–1189. doi: 10.1001/jamaneurol.2017.2188.

18. Farrer LA, Cupples LA, Haines JL et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997; 278 (16): 1349–1356.

19. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2016; 18 (5): 421–430. doi: 10.1038/gim.2015.117.

20. Kwon OD, Khaleeq A, Chan W et al. Apolipoprotein E polymorphism and age at onset of Alzheimer’s disease in a quadriethnic sample. Dement Geriatr Cogn Disord 2010; 30 (6): 486–491. doi: 10.1159/000322368.

21. Xu Q, Bernardo A, Walker D et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 2006; 26 (19): 4985–4994. doi: 10.1523/JNEUROSCI.5476-05.2006.

22. Grehan S, Tse E, Taylor JM. Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci 2001; 21 (3): 812–822.

23. Koudinov AR, Koudinova N V. Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J 2001; 15 (10): 1858–1860. doi: 10.1096/fj.00-0815fje.

24. Kanekiyo T, Xu H, Bu G. ApoE and Ab in Alzheimer’s disease: accidental encounters or partners? Neuron 2014; 81 (4): 740–754. doi: 10.1016/j.neuron.2014.01.045.

25. Castellano JM, Kim J, Stewart FR et al. Human apoE isoforms differentially regulate brain amyloid-peptide clearance. Sci Transl Med 2011; 3 (89): 89ra57-89ra57. doi: 10.1126/scitranslmed.3002156.

26. Kalvach P, Kupka K, Vogner M. Je amyloid podstatný pro senilní demenci? Cesk Slov Neurol N 2018; 81/114 (2): 164–170. doi: 10.14735/amcsnn2018csnn.eu1

27. Tokuda T, Calero M, Matsubara E et al. Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid beta peptides. Biochem J 2000; 348 (Pt 2): 359–365.

28. Verghese PB, Castellano JM, Garai K et al. ApoE influences amyloid-b (Ab) clearance despite minimal apoE/Ab association in physiological conditions. Proc Natl Acad Sci U S A 2013; 110 (19): E1807–E1816. doi: 10.1073/pnas.1220484110.

29. Lim YY, Mormino EC, Alzheimer’s disease neuroimaging initiative. APOE genotype and early b-amyloid accumulation in older adults without dementia. Neurology 2017; 89 (10): 1028–1034. doi: 10.1212/WNL.0000000000004336.

30. Mattsson N, Groot C, Jansen WJ et al. Prevalence of the apolipoprotein E e4 allele in amyloid b positive subjects across the spectrum of Alzheimer’s disease. Alzheimers Dement 2018; 14 (7): 913–924. doi: 10.1016/j.jalz.2018.02.009.

31. Kantarci K, Lowe V, Przybelski SA et al. APOE modifies the association between A load and cognition in cognitively normal older adults. Neurology 2012; 78 (4): 232–240. doi: 10.1212/WNL.0b013e31824365ab.

32. Caselli RJ, Dueck AC, Osborne D et al. Longitudinal modeling of age-related memory decline and the APOE e4 Effect. N Engl J Med 2009; 361 (3): 255–263. doi: 10.1056/NEJMoa0809437.

33. Egan MF, Kojima M, Callicott JH et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112 (2): 257–269. doi: 10.1016/s0092-8674 (03) 00035-7.

34. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677–736. doi: 10.1146/annurev.neuro.24.1.677.

35. Liao GY, Bouyer K, Kamitakahara A et al. Brain-derived neurotrophic factor is required for axonal growth of selective groups of neurons in the arcuate nucleus. Mol Metab 2015; 4 (6): 471–482. doi: 10.1016/j.molmet.2015.03.003.

36. Gao X, Smith GM, Chen J. Impaired dendritic development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling. Exp Neurol 2009; 215 (1): 178–190. doi: 10.1016/j.expneurol.2008.10.009.

37. Li T, Jiang L, Zhang X et al. In-vitro effects of brain-derived neurotrophic factor on neural progenitor/stem cells from rat hippocampus. Neuroreport 2009; 20 (3): 295–300. doi: 10.1097/WNR.0b013e32832000c8.

38. Deinhardt K, Chao M V. Shaping neurons: long and short range effects of mature and proBDNF signalling upon neuronal structure. Neuropharmacology 2014; 76 (Pt C): 603–609. doi: 10.1016/j.neuropharm.2013.04.054.

39. Panja D, Bramham CR. BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 2014; 76 (Pt C): 664–676. doi: 10.1016/j.neuropharm.2013.06.024.

40. Angelucci F, Čechová K, Průša R et al. Amyloid beta soluble forms and plasminogen activation system in Alzheimer’s disease: consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther 2019; 25 (3): 303–313. doi: 10.1111/cns.13082.

41. Hashimoto K. Regulation of brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain by serotonin. Eur Arch Psychiatry Clin Neurosci 2016; 266 (3): 195–197. doi: 10.1007/s00406-016-0682-9.

42. Yang J, Harte-Hargrove LC, Siao CJ et al. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep 2014; 7 (3): 796–806. doi: 10.1016/j.celrep.2014.03.040.

43. Yu H, Zhang Z, Shi Y et al. Cognitive function, serum BDNF levels and BDNF gene Val66Met polymorphism in amnestic mild cognitive impairment. J Cent South Univ Med Sci 2008; 33 (4): 321–325.

44. Forlenza OV, Miranda AS, Guimar I et al. Decreased neurotrophic support is associated with cognitive decline in non-demented subjects. J Alzheimers Dis 2015; 46 (2): 423–429. doi: 10.3233/JAD-150172.

45. Laske C, Stellos K, Hoffmann N et al. Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J Neuropsychopharmacol 2011; 14 (3): 399–404. doi: 10.1017/S1461145710001008.

46. Forlenza OV, Diniz BS, Teixeira AL et al. Lower cerebrospinal fluid concentration of brain-derived neurotrophic factor predicts progression from mild cognitive impairment to Alzheimer’s disease. NeuroMolecular Med 2015; 17 (3): 326–332. doi: 10.1007/s12017-015-8361-y.

47. Ozan E, Okur H, Eker Ç et al. The effect of depression, BDNF gene val66met polymorphism and gender on serum BDNF levels. Brain Res Bull 2010; 81 (1): 61–65. doi: 10.1016/j.brainresbull.2009.06.022.

48. Kennedy KM, Reese ED, Horn MM et al. BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res 2015; 1612: 104–117. doi: 10.1016/j.brainres.2014.09.044.

49. Squire LR, Ojemann JG, Miezin FM et al. Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proc Natl Acad Sci U S A 1992; 89 (5): 1837–1841. doi: 10.1073/pnas.89.5.1837.

50. Brown DT, Vickers JC, Stuart KE et al. The BDNF Val66Met polymorphism modulates resilience of neurological functioning to brain ageing and dementia: a narrative review. Brain Sci 2020; 10 (4). pii: E195. doi: 10.3390/brainsci10040195.

51. Hariri AR, Goldberg TE, Mattay VS et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 2003; 23 (17): 6690–6694.

52. Lim YY, Villemagne VL, Laws SM et al. BDNF Val66Met, Ab amyloid, and cognitive decline in preclinical Alzheimer’s disease. Neurobio­l Aging 2013; 34 (11): 2457–2464. doi: 10.1016/j.neurobio­laging.2013.05.006.

53. Combarros O, Infante J, Llorca J et al. Polymorphism at Codon 66 of the Brain-derived neurotrophic factor gene is not associated with sporadic Alzheimer’s disease. Dement Geriatr Cogn Disord 2004; 18 (1): 55–58. doi: 10.1159/000077736.

54. Lambert JC, Ibrahim-Verbaas CA, Harold D et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45 (12): 1452–1458. doi: 10.1038/ng.2802.

55. Tsai SJ, Gau YT, Liu ME et al. Association study of brain-derived neurotrophic factor and apolipoprotein E polymorphisms and cognitive function in aged males without dementia. Neurosci Lett 2008; 433 (2): 158–162. doi: 10.1016/j.neulet.2007.12.057.

56. Ward D, Summers MJ, Saunders NL et al. APOE and BDNF Val66Met polymorphisms combine to influence episodic memory function in older adults. Behav Brain Res 2014; 271: 309–315. doi: 10.1016/j.bbr.2014.06.022.

57. Lim YY, Villemagne VL, Laws SM et al. APOE and BDNF polymorphisms moderate amyloid b-related cognitive decline in preclinical Alzheimer’s disease. Mol Psychiatry 2015; 20 (11): 1322–1328. doi: 10.1038/mp.2014.123.

58. Cechova K, Andel R, Angelucci F et al. Impact of APOE and BDNF Val66Met gene polymorphisms on cognitive functions in patients with amnestic mild cognitive impairment. J Alzheimers Dis 2020; 73 (1): 247–257. doi: 10.3233/JAD-190464.

59. Sen A, Nelson TJ, Alkon DL. ApoE4 and a oligomers reduce BDNF expression via HDAC nuclear translocation. J Neurosci 2015; 35 (19): 7538–7551. doi: 10.1523/JNEUROSCI.0260-15.2015.

60. Cechova K, Chmatalova Z, Markova H et al. Impact of genetic variant of APOE E4 and BDNF Met on BDNF levels, cognition and brain morphometry in mild cognitive impairment. J Neurol Sci 2019; 405: 19–20. doi: 10.1016/j.jns.2019.10.247.

61. Cechova K, Chmatalova Z, Markova H et al. Effect of APOE E4 and BDNF Val66Met polymorphism on BDNF levels and cognitive performance in mild cognitive impairment patients. Alzheimers Dement 2019; 15: P629.

62. Franzmeier N, Ren J, Damm A et al. The BDNFVal66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer’s disease. Mol Psychiatry 2019 Mar 21 [Online ahead of print]. doi: 10.1038/s41380-019-0404-6.

63. Erickson KI, Voss MW, Prakash RS et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci 2011; 108 (7): 3017–3022. doi: 10.1073/pnas.1015950108.

64. Smith JC, Nielson KA, Woodard JL et al. Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimers disease. Front Aging Neurosci 2014; 6: 61. doi: 10.3389/fnagi.2014.00061.

65. Schuit A, Feskens E, Launer L et al. Physical activity and cognitive decline, the role of the apolipoprotein e4 allele. Med Sci Sports Exerc 2001; 33 (5): 772–777. doi: 10.1097/00005768-200105000-00015.

66. Jensen CS, Simonsen AH, Siersma V et al. Patients with Alzheimer’s disease who carry the APOE e4 allele benefit more from physical exercise. Alzheimers Dement (N Y) 2019; 5: 99–106. doi: 10.1016/j.trci.2019.02.007.

67. de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol 2008; 3 (5): 505–530. doi: 10.2217/17460875.3.5.505.

68. Luchsinger JA, Tang MX, Shea S et al. Caloric intake and the risk of Alzheimer disease. Arch Neurol 2002; 59 (8): 1258–1263. doi: 10.1001/archneur.59.8.1258.

69. Solomon A, Turunen H, Ngandu T et al. Effect of the apolipoprotein E genotype on cognitive change during a multidomain lifestyle intervention: a subgroup analysis of a randomized clinical Trial. JAMA Neurol 2018; 75 (4): 462–470. doi: 10.1001/jamaneurol.2017.4365.

70. Coelho FG de M, Gobbi S, Andreatto CA et al. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr 2013; 56 (1): 10–15. doi: 10.1016/j.archger.2012.06.003.

71. Canivet A, Albinet CT, André N et al. Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: a cross sectional study. Eur Rev Aging Phys Act 2015; 12: 15. doi: 10.1186/s11556-015-0159-2.

72. Nascimento CM, Pereira JR, Pires de Andrade L et al. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different BDNF Val66Met genotypes. J Alzheimers Dis 2014; 43 (1): 81–91. doi: 10.3233/JAD-140576.

73. Cahn BR, Goodman MS, Peterson CT et al. Yoga, meditation and mind-body health: increased BDNF, cortisol awakening response, and altered inflammatory marker expression after a 3-month yoga and meditation retreat. Front Hum Neurosci 2017; 11: 315. doi: 10.3389/fnhum.2017.00315.

74. Marciniak R, Sheardova K, Cermáková P et al. Effect of meditation on cognitive functions in context of aging and neurodegenerative diseases. Front Behav Neurosci 2014; 8: 17. doi: 10.3389/fnbeh.2014.00017.

75. Vyhnálek M, Vyhnálková E, Laczó J. Genetika Alzheimerovy nemoci pro klinickou praxi. Neurol praxi 2019; 20: 338–341.

76. Lineweaver TT, Bondi MW, Galasko D et al. Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults. Am J Psychiatry 2014; 171 (2): 201–208. doi: 10.1176/appi.ajp.2013.12121590.

77. Green RC, Roberts JS, Cupples LA et al. Disclosure of APOE genotype for risk of Alzheimer’s disease. N Engl J Med 2009; 361 (3): 245–254. doi: 10.1056/NEJMoa0809578.

78. Chao S, Roberts JS, Marteau TM et al. Health behavior changes after genetic risk assessment for Alzheimer disease: the REVEAL study. Alzheimer Dis Assoc Disord 2008; 22 (1): 94–97. doi: 10.1097/WAD.0b013e31815a9dcc.

79. Ressner P, Hort J, Rektorová I et al. Doporučené postupy pro dia­gnostiku Alzheimerovy nemoci a dalších onemocnění spojených s demencí. Cesk Slov Neurol N 2008; 71/104 (4): 494–501.

80. Ferda J, Ferdová E, Baxa J et al. PET/MR u neurodegenerativních onemocnění s kognitivním deficitem. Ces Radiol 2015; 69 (4): 229–237.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 3

2020 Issue 3

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account