Cognitive disorders in children with epilepsy


Authors: S. Kolář 1;  J. Pejčochová 2;  ;  O. Horák 2;  H. Ošlejšková 2
Authors‘ workplace: LF MU, Brno 1;  Akademické centrum pro, epileptologii a epileptochirurgii, Klinika dětské neurologie LF MU, a FN Brno 2
Published in: Cesk Slov Neurol N 2020; 83/116(3): 243-250
Category: Review Article
doi: 10.14735/amcsnn2020243

Overview

Children with epilepsy often suffer from cognitive disorders, which can be global or domain specific. Etiology of these deficits might be the same as the etiology of epilepsy, although antiepileptic therapy itself can be the cause of cognitive deficits which needs to be considered when choosing the right medication. Monitoring the current state of cognitive functions using neuropsychological tests is necessary for proper management of cognitive disorders. There are numerous tests available for specific age groups evaluating various domains of cognitive functions with a quick screening test option used to monitor antiepileptic therapy’s influence on cognitive deficit and dynamics of cognitive disorders. Identification of any cognitive deficit has to be followed by searching for factors that have negative effects on cognitive functions that can be influenced by proper management, such as higher seizure frequency, interictal epileptic activity, antiepileptic drug side effects and some etiological factors. Whether a child is a suitable candidate for epilepsy surgery also has to be considered.

Keywords:

epilepsy – cognitive disorders – neuropsychological tests – child


Sources

1. Aldenkamp AP, Bodde N. Behaviour, cognition and epilepsy. Acta Neurol Scand Suppl 2005; 182: 19–25. doi: 10.1111/j.1600-0404.2005.00523.x.

2. Kim EH, Ko TS. Cognitive impairment in childhood onset epilepsy: Up-to-date information about its causes. Korean J Pediatr 2016; 59 (4): 155–164. doi: 10.3345/kjp.2016.59.4.155.

3. Braun KP. Preventing cognitive impairment in children with epilepsy. Curr Opin Neurol 2017; 30 (2): 140–147. doi: 10.1097/WCO.0000000000000424.

4. Camfield P, Camfield C. Regression in children with epilepsy. Neurosci Biobehav Rev 2019; 96: 210–218. doi: 10.1016/j.neubio­rev.2018.12.008.

5. Helmstaedter C, Witt JA. Epilepsy and cognition – a bidirectional relationship? Seizure 2017; 49: 83–89. doi: 10.1016/j.seizure.2017.02.017.

6. Karrasch M, Tiitta P, Hermann B et al. Cognitive outcome in childhood-onset epilepsy – a five-decade prospective cohort study. J Int Neuropsychol Soc 2017; 23 (4): 332–340. doi: 10.1017/S1355617716001077.

7. Reilly C, Atkinson P, Das KB et al. Cognition in school--a­ged children with “active” epilepsy – a population-based study. J Clin Exp Neuropsychol 2015; 37 (4): 429–438. doi: 10.1080/13803395.2015.1024103.

8. Sachdev PS, Blacker D, Blazer DG et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol 2014; 10 (11): 634–642. doi: 10.1038/nrneurol.2014.181.

9. Kernan CL, Siddarth P, Lanphier EK et al. Neurocognitive profiles in children with epilepsy. Epilepsia 2012; 53 (12): 2156–2163. doi: 10.1111/j.1528-1167.2012.03706.x.

10. Wilson SJ, Baxendale S, Barr W et al. Indications and expectations for neuropsychological assessment in routine epilepsy care: Report of the ILAE Neuropsychology Task Force, Dia­gnostic Methods Commission, 2013–2017. Epilepsia 2015; 56 (5): 674–681. doi: 10.1111/epi.12962.

11. Helmstaedter C, Schoof K, Rossmann T et al. Introduction and first validation of EpiTrack Junior, a screening tool for the assessment of cognitive side effects of antiepileptic medication on attention and executive functions in children and adolescents with epilepsy. Epilepsy Behav 2010; 19 (1): 55–64. doi: 10.1016/j.yebeh.2010.06.042.

12. MacAllister WS, Maiman M, Vasserman M et al. The WISC-V in children and adolescents with epilepsy. Child Neuropsychol 2019; 25 (7): 992–1002. doi: 10.1080/09297049.2019.1571181.

13. McCrimmon AW, Smith AD. Review of the Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI-II). J Psychoeduc Assess 2013; 31: 337–341. doi: 10.1177/0734282912467756.

14. Scheffer IE, Berkovic S, Capovilla G et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017; 58 (4): 512–521. doi: 10.1111/epi.13709.

15. Cusmai R, Moavero R, Bombardieri R et al. Long-term neurological outcome in children with early-onset epilepsy associated with tuberous sclerosis. Epilepsy Behav 2011; 22 (4): 735–739. doi: 10.1016/j.yebeh.2011.08.037.

16. Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol 2015; 14 (7): 733–745. doi: 10.1016/S1474-4422 (15) 00069-1.

17. Jóźwiak S, Kotulska K, Domańska-Pakieła D et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol 2011; 15 (5): 424–431. doi: 10.1016/j.ejpn.2011.03.010.

18. Wolff M, Johannesen KM, Hedrich UBS et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140 (5): 1316–1336. doi: 10.1093/brain/awx054.

19. Olivieri G, Battaglia D, Chieffo D et al. Cognitive-behavioral profiles in teenagers with Dravet syndrome. Brain Dev 2016; 38 (6): 554–562. doi: 10.1016/j.braindev.2015.12.014.

20. Česká K, Aulická Š, Dahofer P et al. SCN1A mutation positive Dravet syndrome, genetic aspects and clinical experiences. Cesk Slov Neurol N 2018; 81/114 (1): 55–59. doi: 10.14735/amcsnn201855.

21. Vezzani A, Fujinami RS, White HS et al. Infections, inflammation and epilepsy. Acta Neuropathol 2016; 131 (2): 211–234. doi: 10.1007/s00401-015-1481-5.

22. Česká K, Horák O, Ošlejšková H et al. New-onset refractory status epilepticus and considered spectrum disorders (NORSE/FIRES). Cesk Slov Neurol N 2018; 81/114 (6): 658–662. doi: 10.14735/amcsnn2018658.

23. Gaspard N, Hirsch LJ, Sculier C et al. New-onset refractory status epilepticus (NORSE) and febrile infection–related epilepsy syndrome (FIRES): state of the art and perspectives. Epilepsia 2018; 59 (4): 745–752. doi: 10.1111/epi.14022.

24. Lee HF, Chi CS. Febrile infection-related epilepsy syndrome (FIRES): therapeutic complications, long-term neurological and neuroimaging follow-up. Seizure 2018; 56: 53–59. doi: 10.1016/j.seizure.2018.02.003.

25. Marusič P, Ošlejšková H, Brázdil M et al. Nové klasifikace epileptických záchvatů a epilepsií ILAE 2017. Neurol praxi 2018; 19: 32–36.

26. Lee VL, Choo BK, Chung YS et al. Treatment, therapy and management of metabolic epilepsy: a systematic review. Int J Mol Sci 2018; 19 (3): pii: E871. doi: 10.3390/ijms19030871.

27. Papetti L, Parisi P, Leuzzi V et al. Metabolic epilepsy: an update. Brain Dev 2013; 35 (9): 827–841. doi: 10.1016/j.braindev.2012.11.010.

28. Sharma S, Prasad A. Inborn Errors of metabolism and epilepsy: current understanding, dia­gnosis, and treatment approaches. Int J Mol Sci 2017; 18 (7): pii: E1384. doi: 10.3390/ijms18071384.

29. Aulická Š, Fajkusová L, Šilerová P et al. Pyridoxine-dependent epilepsy – case reports. Cesk Slov Neurol N 2017; 80/113 (3): 346–9. doi: 10.14735/amcsnn2017346.

30. Van Karnebeek CD, Tiebout SA, Niermeijer J et al. Pyridoxine-dependent epilepsy: an expanding clinical spectrum. Pediatr Neurol 2016; 59: 6–12. doi: 10.1016/j.pediatrneurol.2015.12.013.

31. Wright S, Vincent A. Progress in autoimmune epileptic encephalitis. Curr Opin Neurol 2016; 29 (2): 151–157. doi: 10.1097/WCO.0000000000000304.

32. Varadkar S, Cross JH. Rasmussen syndrome and other inflammatory epilepsies. Semin Neurol 2015; 35 (3): 259–268. doi: 10.1055/s-0035-1552921.

33. Kim J, Park EK, Shim KW et al. Hemispherotomy and functional hemispherectomy: indications and outcomes. J Epilepsy Res 2018; 8 (1): 1–5. doi: 10.14581/jer.18001.

34. Nickels KC, Wirrell EC. Cognitive and social outcomes of epileptic encephalopathies. Semin Pediatr Neurol 2017; 24 (4): 264–275. doi: 10.1016/j.spen.2017.10.001.

35. Beal JC, Cherian K, Moshe SL. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol 2012; 47 (5): 317–323. doi: 10.1016/j.pediatrneurol.2012.06.002.

36. D’Alonzo R, Rigante D, Mencaroni E et al.West syndrome: a review and guide for paediatricians. Clin Drug Investig 2018; 38 (2): 113–124. doi: 10.1007/s40261-017-0595-z.

37. Berg AT, Levy SR, Testa FM. Evolution and course of early life developmental encephalopathic epilepsies: focus on Lennox-Gastaut syndrome. Epilepsia 2018; 59 (11): 2096–2105. doi: 10.1111/epi.14569.

38. Sculier C, Gaínza-Lein M, Sánchez Fernández I et al.Long-term outcomes of status epilepticus: a critical assessment. Epilepsia 2018; 59 (Suppl 2): 155–169. doi: 10.1111/epi.14515.

39. Jafarpour S, Loddenkemper T. Outcomes in pediatric patients with nonconvulsive status epilepticus. Epilepsy Behav 2015; 49: 98–103. doi: 10.1016/j.yebeh.2015.06.015.

40. Martinos MM, Pujar S, Gillberg C et al. Long--term behavioural outcomes after paediatric convulsive status epilepticus: a population-based cohort study. Dev Med Child Neurol 2018; 60 (4): 409–416. doi: 10.1111/dmcn.13636.

41. Camfield P, Camfield C. Unprovoked status epilepticus: the prognosis for otherwise normal children with focal epilepsy. Pediatrics 2012; 130 (3): e501–e506. doi: 10.1542/peds.2012-0838.

42. Kavanaugh BC, Scarborough VR, Salorio CF. Use of a cumulative risk scale to predict poor intellectual and academic outcomes in childhood epilepsy. J Child Neurol 2016; 31 (7): 831–836. doi: 10.1177/0883073815623633.

43. Meekes J, Jennekens-Schinkel A. Effects of interictal epileptiform discharges on cognition. J Ped­-iatr Epilepsy 2018; 7: 82–88. doi: 10.1055/s-0038-1676847.

44. Lenck-Santini PP, Scott RC. Mechanisms responsible for cognitive impairment in epilepsy. Cold Spring Harb Perspect Med 2015; 5 (10): 1–15. doi: 10.1101/cshperspect.a022772.

45. Landi S, Petrucco L, Sicca F et al. Transient cognitive impairment in epilepsy. Front Mol Neurosci 2019; 11: 252–267. doi: 10.3389/fnmol.2018.00458.

46. Moavero R, Santarone ME, Galasso C et al. Cognitive and behavioral effects of new antiepileptic drugs in pediatric epilepsy. Brain Dev 2017; 39 (6): 464–469. doi: 10.1016/j.braindev.2017.01.006.

47. Ulate-Campos A, Fernández IS. Cognitive and Behavioral comorbidities: an unwanted effect of antiepileptic drugs in children. Semin Pediatr Neurol 2017; 24 (4): 320–330. doi: 10.1016/j.spen.2017.10.011.

48. Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol 2014; 13 (11): 1114–1126. doi: 10.1016/S1474-4422 (14) 70156-5.

49. Braun KP, Cross JH. Pediatric epilepsy surgery: the earlier the better. Expert Rev Neurother 2018; 18 (4): 261–263. doi: 10.1080/14737175.2018.1455503.

50. Ramantani G, Zentner J. Epilepsy surgery in children and adolescents. Neurol Int Open 2017; 1 (2): E86–E97. doi: 10.1055/s-0043-102834.

51. Moosa AN, Wyllie E. Cognitive outcome after epilepsy surgery in children. Semin Pediatr Neurol 2017; 24 (4): 331–339. doi: 10.1016/j.spen.2017.10.010.

52. Belohlavkova A, Jezdik P, Jahodova A et al. Original article evolution of pediatric epilepsy surgery program over 2000–2017: improvement of care? Eur J Paediatr Neurol 2019; 23 (3): 456–465. doi: 10.1016/j.ejpn.2019.04.002.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 3

2020 Issue 3

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account