Proteomics of cerebrospinal fluid in pediatric oncology patients


Authors: D. Zapletalová 1*;  P. Múdrý 1*;  P. Danhofer 2;  M. E. Barrios-Llerena 3;  H. Ošlejšková 2;  J. Štěrba 1
Authors‘ workplace: Klinika dětské onkologie, LF MU a FN Brno 1;  Centrum pro epilepsie, Klinika dětské, neurologie LF MU a FN Brno 2;  Mezinárodní centrum klinického, výzkumu FNUsA Brno 3
Published in: Cesk Slov Neurol N 2021; 84/117(3): 245-249
Category: Review Article
doi: 10.48095/cccsnn2021245

Overview

Major technological advances in the last two decades have led to the rise of proteomic analyses in various fields of medicine. In oncology, cerebrospinal fluid proteomics focuses on the detection of biomarkers in primary CNS tumors and on the detection of CNS involvement secondarily or on the monitoring of neurological complications of treatment such as leukemias or lymphomas. Cytology may not be sensitive enough to detect such at-risk patients. In pediatric neuro-oncology, the diagnosis and subsequent treatment of CNS tumors is currently based almost exclusively on histological and molecular biological examination of tumor tissue. However, in a large number of patients, resection or mere biopsy of the tumor is not possible due to the proximity of vital centers. In these cases, a reliable bio marker could help, providing more detailed information on diagnosis, tumor classification, or risk assessment, or helping to identify potential treatment targets from better available bio logical material such as cerebrospinal fluid. CNS relapse occurs in 3–8% of children with acute lymphoblastic leukemia. In addition, patients with confirmed CNS leukemia tend to have a worse treatment outcome. During treatment, pediatric patients also face numerous complications, one of the most serious being those affecting the CNS. The authors present an overview of the results of current studies dealing with cerebrospinal fluid proteomics in pediatric oncological patients.

Keywords:

proteomics – biomarkers – child – CNS neoplasms – acute lymphoblastic leukemia


Sources

1. Dušková J, Sobek O. Assisting the neurologist in diagnosis of CNS malignancies – current possibilities and limits of cerebrospinal fluid cytology and immunocytochemistry. Brain Behav 2017; 7(10): e00805. doi: 10.1002/ brb3.805.

2. Tsangaris GT, Anagnostopoulos AK. Pediatric brain tumors: update of proteome-based studies. J Proteomics 2018; 188: 41–45. doi: 10.1016/ j.jprot.2018.02.016.

3. Veenstra TD, Conrads TP, Hood BL et al. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 2005; 4(4): 409–418. doi: 10.1074/ mcp.M500006-MCP200.

4. Waybright T, Avellino AM, Ellenbogen RG et al. Characterization of the human ventricular cerebrospinal fluid proteome obtained from hydrocephalic patients. J Proteomics 2010; 73(6): 1156–1162. doi: 10.1016/ j. jprot.2010.02.004.

5. Samuel N, Remke M, Rutka JT et al. Proteomic analyses of CSF aimed at biomarker development for pediatric brain tumors. J Neurooncol 2014; 118(2): 225–238. doi: 10.1007/ s11060-014-1432-3.

6. Louis DN, Perry A, Reifenberger G et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol (Berl) 2016; 131(6): 803–820. doi: 10.1007/ s00401- 016-1545-1.

7. Bonner ER, Bornhorst M, Packer RJ et al. Liquid biopsy for pediatric central nervous system tumors. Npj Precis Oncol 2018; 2(1): 29. doi: 10.1038/ s41698-018-0072-z.

8. Nishizaki T, Kajiwara K, Adachi N et al. Detection of craniospinal dissemination of intracranial germ cell tumours based on serum and cerebrospinal fluid levels of tumour markers. J Clin Neurosci 2001; 8(1): 27–30. doi: 10.1054/ jocn.2000.0750.

9. Seregni E, Massimino M, Molteni SN et al. Serum and cerebrospinal fluid human chorionic gonadotropin (hCG) and alpha-fetoprotein (AFP) in intracranial germ cell tumors. Int J Biol Markers 2002; 17(2): 112–118. doi: 10.1177/ 172460080201700206.

10. Spreafico F, Bongarzone I, Pizzamiglio S et al. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 2017; 8(28): 46177–46190. doi: 10.18632/ oncotarget.17579.

11. Whitin JC, Jang T, Merchant M et al. Alterations in cerebrospinal fluid proteins in a presymptomatic primary glioma model. PLoS ONE 2012; 7(11): e49724. doi: 10.1371/ journal.pone.0049724.

12. Khwaja FW, Nolen JD, Mendrinos SE et al. Proteomic analysis of cerebrospinal fluid discriminates malignant and nonmalignant disease of the central nervous system and identifies specific protein markers. Proteomics 2006; 6(23): 6277–6287. doi: 10.1002/ pmic.200600 135.

13. Zheng L, Zhang Y, Hao S et al. A proteomic clock for malignant gliomas: the role of the environment in tumorigenesis at the presymptomatic stage. PLoS ONE 2019; 14(10): e0223558. doi: 10.1371/ journal.pone.0223558.

14. Neglia JP, Robison LL, Stovall M et al. New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. JNCI J Natl Cancer Inst 2006; 98(21): 1528–1537. doi: 10.1093/ jnci/ djj411.

15. Anagnostopoulos AK, Papathanassiou C, Karamolegou K et al. Proteomic studies of pediatric medulloblastoma tumors with 17p deletion. J Proteome Res 2015; 14(2): 1076–1088. doi: 10.1021/ pr501219f.

16. Saratsis AM, Yadavilli S, Magge S et al. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro-Oncol 2012; 14(5): 547–560. doi: 10.1093/ neuonc/ nos067.

17. Müller HL, Oh Y, Gargosky SE et al. Concentrations of insulin-like growth factor (IGF)-binding protein-3 (IGFBP- 3), IGF, and IGFBP-3 protease activity in cerebrospinal fluid of children with leukemia, central nervous system tumor, or meningitis. J Clin Endocrinol Metab 1993; 77(5): 1113–1119. doi: 10.1210/ jcem.77.5.7521338.

18. Müller HL, Oh Y, Lehrnbecher T et al. Insulin-like growth factor-binding protein-2 concentrations in cerebrospinal fluid and serum of children with malignant solid tumors or acute leukemia. J Clin Endocrinol Metab 1994; 79(2): 428–434. doi: 10.1210/ jcem.79.2.7519190.

19. Kao CL, Chiou SH, Ho DM et al. Elevation of plasma and cerebrospinal fluid osteopontin levels in patients with atypical teratoid/ rhabdoid tumor. Am J Clin Pathol 2005; 123(2): 297–304. doi: 10.1309/ 0FTKBKVNK4T5 P1L1.

20. Watanabe S, Aihara Y, Kikuno A et al. A Highly sensitive and specific chemiluminescent enzyme immunoassay for placental alkaline phosphatase in the cerebrospinal fluid of patients with intracranial germinomas. Pediatr Neurosurg 2012; 48(3): 141–145. doi: 10.1159/ 000345632.

21. Rajagopal MU, Hathout Y, MacDonald TJ et al. Proteomic profiling of cerebrospinal fluid identifies prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: a pediatric brain tumor consortium study. Proteomics 2011; 11(5): 935–943. doi: 10.1002/ pmic.201000198.

22. Desiderio C, D’Angelo L, Rossetti DV et al. Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics 2012; 12(13): 2158–2166. doi: 10.1002/ pmic.201100499.

23. de Bont JM, Vanderstichele H, Reddingius RE et al. Increased total-Tau levels in cerebrospinal fluid of pediatric hydrocephalus and brain tumor patients. Eur J Paediatr Neurol 2008; 12(4): 334–341. doi: 10.1016/ j.ejpn. 2007.09.007.

24. Chiaretti S, Vitale A, Cazzaniga G et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica 2013; 98(11): 1702–1710. doi: 10.3324/ haematol. 2012.080432.

25. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med 2015; 373(16): 1541–1552. doi: 10.1056/ NEJMra1400972.

26. Mo F, Ma X, Liu X et al. Altered CSF Proteomic profiling of paediatric acute lymphocytic leukemia patients with CNS infiltration. J Oncol 2019; 2019: 2019:3283629. doi: 10.1155/ 2019/ 3283629.

27. Zhou F, Wen Y, Jin R et al. New attempts for central nervous infiltration of pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev 2019; 38(4): 657–671. doi: 10.1007/ s10555-019-09827-z.

28. Incesoy-Özdemir S, Sahin G, Bozkurt C et al. The relationship between cerebrospinal fluid osteopontin level and central nervous system involvement in childhood acute leukemia. Turk J Pediatr 2013; 55(1): 42–49.

29. Priola GM, Foster MW, Deal AM et al. Cerebrospinal fluid proteomics in children during induction for acute lymphoblastic leukemia: a pilot study: CSF Proteomics in ALL. Pediatr Blood Cancer 2015; 62(7): 1190–1194. doi: 10.1002/ pbc.25420.

30. Protas P, Holownia A, Muszynska-Roslan K et al. Cerebrospinal fluid IL-6, TNF-a and MCP-1 in children with acute lymphoblastic leukaemia during chemotherapy. Neuropediatrics 2011; 42(06): 254–256. doi: 10.1055/ s-0031-1295477.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 3

2021 Issue 3

Most read in this issue
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account