#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dia­gnostics and management of patients with radiologically isolated syndrome


Authors: M. Petrášová;  M. Hladíková;  J. Kočica
Authors place of work: Neurologická klinika LF MU a FN Brno
Published in the journal: Cesk Slov Neurol N 2025; 88(4): 203-209
doi: https://doi.org/10.48095/cccsnn2025203

Summary

Radiologically isolated syndrome (RIS) represents one of the earliest identifiable stages of MS, characterized by the presence of asymptotic demyelinating lesions on MRI corresponding to MS. With the increasing availability of MRI, these incidental findings are being detected more frequently and their prognostic significance and therapeutic implications are becoming the subject of intensive research. In this review article, we summarize the development of RIS diagnostic criteria –⁠ from their initial formulation in 2009 to the recent 2023 revision. We focus on risk factors for conversion of RIS to clinical MS, on differential diagnosis, useful biomarkers (including the central vein sign, oligoclonal bands, kappa index, and neurofilament light chain levels) and the early interventional trials evaluating the effectiveness of disease-modifying drugs in patients with RIS –⁠ teriflunomide and dimethyl fumarate were among the first to demonstrate the ability to delay the first clinical attack. Previous studies underline the importance of accurately stratifying patients based on a combination of radiological, laboratory, and demographic data, which can help identify individuals at the highest risk of early conversion. This review aims to promote a clinical understanding of RIS and highlight its growing importance, particularly in relation to its position within the newly prepared diagnostic criteria for MS from 2024.

Keywords:

prognostic factors – Multiple sclerosis – magnetic resonance imaging – risk stratification – oligoclonal bands – radiologically isolated syndrome – neurofilament – teriflunomide – dimethyl fumarate


Zdroje

1. De Stefano N, Giorgio A, Tintore M et al. Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Mult Scler 2018; 24(2): 214–221. doi: 10.1177/1352458517717808.

2. Suthiphosuwan S, Sati P, Guenette M et al. The central vein sign in radiologically isolated syndrome. AJNR Am J Neuroradiol 2019; 40(5): 776–783. doi: 10.3174/ajnr.A6045.

3. Makhani N, Lebrun C, Siva A et al. Radiologically isolated syndrome in children: clinical and radiologic outcomes. Neurol Neuroimmunol Neuroinfamm 2017; 4(6): e395. doi: 10.1212/NXI.0000000000000395.

4. Kantarci OH. Phases and phenotypes of multiple sclerosis. Continuum (Minneap Minn) 2019; 25(3): 636–654. doi: 10.1212/CON.0000000000000737.

5. Tremlett H, Marrie RA. The multiple sclerosis prodrome: emerging evidence, challenges, and opportunities. Mult Scler 2021; 27(1): 6–12. doi: 10.1177/1352458520914844.

6. Lebrun-Frénay C, Okuda DT, Siva A et al. The radiologically isolated syndrome: revised diagnostic criteria. Brain 2023; 146(8): 3431–3443. doi: 10.1093/brain/awad073.

7. Disanto G, Adiutori R, Dobson R et al. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J Neurol Neurosurg Psychiatry 2016; 87(2): 126–129. doi: 10.1136/jnnp-2014-309690.

8. Giovannoni G, Butzkueven H, Dhib-Jalbut S et al. Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord 2016; 9(Suppl 1): S5–S48. doi: 10.1016/ j.msard.2016.07.003.

9. Lebrun-Frenay C, Kantarci O, Siva A et al. Radiologically isolated syndrome: 10-year risk estimate of a clinical event. Ann Neurol 2020; 88(2): 407–417. doi: 10.1002/ana. 25799.

10. Moura J, Granziera C, Marta M et al. Emerging imaging markers in radiologically isolated syndrome: implications for earlier treatment initiation. Neurol Sci 2024; 45(7): 3061–3068. doi: 10.1007/s10072-024-07402-1.

11. Morris Z, Whiteley WN, Longstreth WT et al. Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2009; 339: b3016. doi: 10.1136/bmj.b3016.

12. Sunny DE, Amoo M, Al Breiki M et al. Prevalence of incidental intracranial findings on magnetic resonance imaging: a systematic review and meta-analysis. Acta Neurochir (Wien) 2022; 164(10): 2751–2765. doi: 10.1007/s00701-022-05225-7.

13. Okuda DT, Mowry EM, Beheshtian A et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology 2009; 72(9): 800–805. doi: 10.1212/01.wnl.0000335764.

14. Okuda DT, Siva A, Kantarci O et al. Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS One 2014; 9(3): e90509. doi: 10.1371/journal.pone.0090509.

15. Bisulca J, De Lury A, Coyle PK et al. MRI features associated with high likelihood of conversion of radiologically isolated syndrome to multiple sclerosis. Mult Scler Relat Disord 2019; 36 : 101381. doi: 10.1016/j.msard.2019.101381.

16. Sabeti F, Etemadifar M, Ostadsharif N et al. The prominence of oligoclonal bands for clinical conversion in radiologically isolated syndrome: 10-year follow-up study in Isfahan, Iran. Clin Neurol Neurosurg 2024; 245 : 108509. doi: 10.1016/j.clineuro.2024.108509.

17. Engell T. A clinical patho-anatomical study of clinically silent multiple sclerosis. Acta Neurol Scand 1989; 79(5): 428–430. doi: 10.1111/j.1600-0404.1989.tb03811.x.

18. Phadke JG, Best PV. Atypical and clinically silent multiple sclerosis: a report of 12 cases discovered unexpectedly at necropsy. J Neurol Neurosurg Psychiatry 1983; 46(5): 414–420. doi: 10.1136/jnnp.46.5.414.

19. Yamout B, Al KM. Radiologically isolated syndrome and multiple sclerosis. Mult Scler Relat Disord 2017; 17 : 234–237. doi: 10.1016/j.msard.2017.08.016.

20. Forslin Y, Granberg T, Jumah AA et al. Incidence of radiologically isolated syndrome: a population-based study. AJNR Am J Neuroradiol 2016; 37(6): 1017–1022. doi: 10.3174/ajnr.A4660.

21. Poser CM, Paty DW, Scheinberg L et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13(3): 227–231. doi: 10.1002/ana.410130302.

22. Thompson AJ, Banwell BL, Barkhof F et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17(2): 162–173. doi: 10.1016/S1474-4422(17)30470-2.

23. Montalban X. 2024 revisions of the McDonald criteria. ECTRIMS 2024; 19. 9. 2024; Copenhagen, Denmark.

24. Polman CH, Reingold SC, Edan G et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the „McDonald Criteria“. Ann Neurol 2005; 58(6): 840–846. doi: 10.1002/ana.20703.

25. Polman CH, Reingold SC, Banwell B et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69(2): 292–302. doi: 10.1002/ana.22366.

26. Held F. Validating proposed 2023 radiologically isolated syndrome criteria. ECTRIMS 2024; 30 (Suppl 3). doi: 10.1177/13524585241269. Copenhagen, Denmark.

27. Kantarci OH, Lebrun C, Siva A et al. Primary progressive multiple sclerosis evolving from radiologically isolated syndrome. Ann Neurol 2016; 79(2): 288–294. doi: 10.1002/ana.24564.

28. Lebrun-Frénay C, Rollot F, Mondot L et al. Risk factors and time to clinical symptoms of multiple sclerosis among patients with radiologically isolated syndrome. JAMA Netw Open 2021; 4(10): e2128271. doi: 10.1001/jamanetworkopen.2021.28271.

29. Makhani N, Lebrun C, Siva A et al. Oligoclonal bands increase the specificity of MRI criteria to predict multiple sclerosis in children with radiologically isolated syndrome. Mult Scler J Exp Transl Clin 2019; 5(1): 2055217319836664. doi: 10.1177/2055217319836664.

30. Okuda DT, Mowry EM, Cree BA et al. Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome. Neurology 2011; 76(8): 686–692. doi: 10.1212/WNL.0b013e31820d8b1d.

31. Matute-Blanch C, Villar LM, Álvarez-Cermeño JC et al. Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain 2018; 141(4): 1085–1093. doi: 10.1093/brain/ awy021.

32. Zeydan B, Azevedo CJ, Makhani N et al. Early disease--modifying treatments for presymptomatic multiple sclerosis. CNS Drugs 2024; 38(12): 973–983. doi: 10.1007/s40263-024-01117-9.

33. Swartz RH, Kern RZ. Migraine is associated with magnetic resonance imaging white matter abnormalities: a meta-analysis. Arch Neurol 2004; 61(9): 1366–1368. doi: 10.1001/archneur.61.9.1366.

34. Kurth T, Mohamed S, Maillard P et al. Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study. BMJ 2011; 342: c7357. doi: 10.1136/bmj.c7357.

35. Kruit MC, van Buchem MA, Hofman PA et al. Migraine as a risk factor for subclinical brain lesions. JAMA 2004; 291(4): 427–434. doi: 10.1001/jama.291.4.427.

36. Eikermann-Haerter K, Huang SY. White matter lesions in migraine. Am J Pathol 2021; 191(11): 1955–1962. doi: 10.1016/j.ajpath.2021.02.007.

37. Abdel-Mannan O, Klein A, Bachar Zipori A et al. Radiologically isolated aquaporin-4 antibody neuromyelitis optica spectrum disorder. Mult Scler 2022; 28(4): 676–679. doi: 10.1177/13524585221074947.

38. Kim SH, Hyun JW, Joung A et al. Occurrence of asymptomatic acute neuromyelitis optica spectrum disorder-typical brain lesions during an attack of optic neuritis or myelitis. PLoS One 2016; 11(12): e0167783. doi: 10.1371/journal.pone.0167783.

39. Carnero Contentti E, Okuda DT, Rojas JI et al. MRI to differentiate multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. J Neuroimaging 2023; 33(5): 688–702. doi: 10.1111/jon.13137.

40. Miller DH, Weinshenker BG, Filippi M et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler 2008; 14(9): 1157–1174. doi: 10.1177/1352458508096878.

41. Oh J, Suthiphosuwan S, Sati P et al. Cognitive impairment, the central vein sign, and paramagnetic rim lesions in RIS. Mult Scler 2021; 27(14): 2199–2208. doi: 10.1177/13524585211002097.

42. George IC, Rice DR, Chibnik LB et al. Radiologically isolated syndrome: a single-center, retrospective cohort study. Mult Scler Relat Disord 2021; 55 : 103183. doi: 10.1016/j.msard.2021.103183.

43. Castellaro M, Tamanti A, Pisani AI et al. The use of the central vein sign in the diagnosis of multiple sclerosis: a systematic review and meta-analysis. Diagnostics (Basel) 2020; 10(12): 1025. doi: 10.3390/diagnostics10121025.

44. Calabrese M, Gallo P. Magnetic resonance evidence of cortical onset of multiple sclerosis. Mult Scler 2009; 15(8): 933–941. doi: 10.1177/1352458509106510.

45. Cagol A, Cortese R, Barakovic M et al. Diagnostic performance of cortical lesions and the central vein sign in multiple sclerosis. JAMA Neurol 2024; 81(2): 143–153. doi: 10.1001/jamaneurol.2023.4737.

46. Suthiphosuwan S, Sati P, Absinta M et al. Paramagnetic rim sign in radiologically isolated syndrome. JAMA Neurol 2020; 77(5): 653–655. doi: 10.1001/jamaneurol.2020.0124.

47. Ng Kee Kwong KC, Mollison D, Meijboom R et al. The prevalence of paramagnetic rim lesions in multiple sclerosis: a systematic review and meta-analysis. PLoS One 2021; 16(9): e0256845. doi: 10.1371/journal.pone. 0256845.

48. Clarke MA, Pareto D, Pessini-Ferreira L et al. Value of 3T susceptibility-weighted imaging in the diagnosis of multiple sclerosis. AJNR Am J Neuroradiol 2020; 41(6): 1001–1008. doi: 10.3174/ajnr.A6547.

49. Levraut M, Gavoille A, Landes-Chateau C et al. Kappa free light chain index predicts disease course in clinically and radiologically isolated syndromes. Neurol Neuroimmunol Neuroinflamm 2023; 10(6): e200156. doi: 10.1212/NXI.0000000000200156.

50. Marlas M, Bost C, Dorcet G et al. Kappa-index: real-life evaluation of a new tool for multiple sclerosis diagnosis. Clin Immunol 2022; 241 : 109066. doi: 10.1016/j.clim.2022.109066.

51. Hannich MJ, Dressel A, Budde K et al. Kappa free light chains in the context of blood contamination, and other IgA -⁠ and IgM-related cerebrospinal fluid disease pattern. Cells 2021; 10(3): 616. doi: 10.3390/cells100 30616.

52. Konen FF, Schwenkenbecher P, Wurster U et al. The influence of renal function impairment on kappa free light chains in cerebrospinal fluid. J Cent Nerv Syst Dis 2021; 13 : 11795735211042166. doi: 10.1177/11795735211042166.

53. Kuhle J, Barro C, Andreasson U et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med 2016; 54(10): 1655–1661. doi: 10.1515/cclm-2015-1195.

54. Rival M, Thouvenot E, Du Trieu de Terdonck L et al. Neurofilament light chain levels are predictive of clinical conversion in radiologically isolated syndrome. Neurol Neuroimmunol Neuroinflamm 2022; 10(1): e200044. doi: 10.1212/NXI.0000000000200044.

55. Bostan M, Pîrvulescu R, Tiu C et al. OCT and OCT-A biomarkers in multiple sclerosis –⁠ review. Rom J Ophthalmol 2023; 67(2): 107–110. doi: 10.22336/rjo. 2023.20.

56. Aly L, Havla J, Lepennetier G et al. Inner retinal layer thinning in radiologically isolated syndrome predicts conversion to multiple sclerosis. Eur J Neurol 2020; 27(11): 2217–2224. doi: 10.1111/ene.14416.

57. Lebrun-Frénay C, Siva A, Sormani MP et al. Teriflunomide and time to clinical multiple sclerosis in patients with radiologically isolated syndrome: the TERIS randomized clinical trial. JAMA Neurol 2023; 80(10): 1080–1088. doi: 10.1001/jamaneurol.2023.2815.

58. Okuda DT, Kantarci O, Lebrun-Frénay C et al. Dimethyl fumarate delays multiple sclerosis in radiologically isolated syndrome. Ann Neurol 2023; 93(3): 604–614. doi: 10.1002/ana.26555.

59. Okuda DT, Azevedo CJ, Pelletier D et al. Dimethyl fumarate preserves brainstem and cervical spinal cord integrity in radiologically isolated syndrome. J Neurol 2024; 271(9): 5899–5910. doi: 10.1007/s00415-024-12514-x.

60. Longbrake EE, Hua LH, Mowry EM et al. The CELLO trial: protocol of a planned phase 4 study to assess the efficacy of ocrelizumab in patients with radiologically isolated syndrome. Mult Scler Relat Disord 2022; 68 : 104143. doi: 10.1016/j.msard.2022.104143.

61. Lebrun-Frenay. International advisory committee on clinical trials in multiple sclerosis. ECTRIMS 2023; 31. 12. 2023

62. Bonzano L, Bove M, Sormani MP et al. Subclinical motor impairment assessed with an engineered glove correlates with magnetic resonance imaging tissue damage in radiologically isolated syndrome. Eur J Neurol 2019; 26(1): 162–167. doi: 10.1111/ene.13789.

63. Barkhof F, Filippi M, Miller DH et al. Comparison of MRI criteria at first presentation to predict conversion to clinically defnite multiple sclerosis. Brain 1997; 120 (11): 2059–2069. doi: 10.1093/brain/120.11.2059.

Štítky
Dětská neurologie Neurochirurgie Neurologie
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#