Hypothalamic inflam­mation and somatic dis­eases


Authors: B. Mravec;  A. S. Černáčková
Authors‘ workplace: Fyziologický ústav, LF UK v Bratislave ;  Biomedicínske centrum SAV, Ústav experimentálnej endokrinológie, Slovenská akadémia vied, Bratislava
Published in: Cesk Slov Neurol N 2018; 81(3): 278-283
Category: Review Article
doi: 10.14735/amcsnn2018278

Tato práca bola podporená grantom VEGA 2/ 0028/ 16 a grantom EÚ z programu cezhraničnej spolupráce Inter­reg V-A SK-AT V014 –  NutriAging.

Overview

The hypothalamus represents a key structure involved in maintenance of homeostasis. Several factors, such as long-term increases in plasma levels of saturated fatty acids or pro-inflammatory cytokines, can induce hypothalamic inflammation. Hypothalamic inflammation disrupts homeostatic regulations and may contribute to the development of somatic diseases or may have a negative effect on the course of already existing somatic diseases. Hypothalamic inflammation plays a role in the etiopathogenesis of obesity, diabetes mellitus, hypertension, and cachexia. Understanding the causes and mechanisms involved in the development of hypothalamic inflammation allows for a more comprehensive view of the etiopathogenesis of somatic diseases and thus creates a basis for the introduction of new approaches in their treatment.

Keywords:
cytokines – diabetes mellitus – hypertension – hypothalamus – cachexia – obesity – ageing – stress – inflammation

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Bil­lman GE. Homeostasis: the dynamic self-regulatory process that maintains health and buf­fers against dis­ease. In: Sturmberg JP, Martin CM (eds). Handbook of systems and complexity in health. New York: Springer Science+Business Media 2013: 159– 170.

2. Chovatiya R, Medzhitov R. Stres­s, inflam­mation, and defense of homeostasis. Mol Cell 2014; 54(2): 281– 288. doi: 10.1016/ j.molcel.2014.03.030.

3. Graebner AK, Iyer M, Carter ME. Understand­­ing how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9: 111. doi: 10.3389/ fnsys.2015.00111.

4. Watts AG. 60 YEARS OF NEUROENDOCRINOLOGY: the structure of the neuroendocrine hypothalamus: the neuroanatomical legacy of Geof­frey Har­ris. J Endocrinol 2015; 226(2): T25– T39. doi: 10.1530/ JOE-15-0157.

5. de Git KC, Adan RA. Leptin resistance in diet-induced obesity: the role of hypothalamic inflam­mation. Obes Rev 2015; 16(3): 207– 224. doi: 10.1111/ obr.12243.

6. Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic inflam­mation in the acute il­lness response and cachexia. Semin Cell Dev Biol 2016; 54: 42– 52. doi: 10.1016/ j.semcdb.2015.10.038.

7. Swaab DF. Chapter 20 Hypothalamic infections. Handb Clin Neurol 2004; 80: 91– 99. doi: 10.1016/ S0072-9752(04)80006-X.

8. Xanthos DN, Sandkuhler J. Neurogenic neuroinflam­mation: inflam­matory CNS reactions in response to neuronal activity. Nat Rev Neurosci 2014; 15(1): 43– 53. doi: 10.1038/ nrn3617.

9. Velickovic N, Drakulic D, Petrovic S et al. Time-course of hypothalamic-pituitary-adrenal axis activity and inflam­mation in juvenile rat brain after cranial ir­radiation. Cell Mol Neurobio­l 2012; 32(7): 1175– 1185. doi: 10.1007/ s10571-012-9843-1.

10. Bal­lesteros-Zebadua P, Custodio V, Franco-Perez J et al. Whole-brain ir­radiation increases NREM sleep and hypothalamic expres­sion of IL-1beta in rats. Int J RadiatBiol 2014; 90(2): 142– 148. doi: 10.3109/ 09553002.2014.859767.

11. Cai DS, Liu TW. Hypothalamic inflam­mation: a double-edged sword to nutritional dis­eases. Ann Ny Acad Sci 2011; 1243: E1– E39. doi: 10.1111/ j.1749-6632.2011.06388.x.

12. Zhang KZ, Kaufman RJ. From endoplasmic-reticulum stress to the inflam­matory response. Nature 2008; 454(7203): 455– 462. doi: 10.1038/ nature07203.

13. Pahl HL. Activators and target genes of Rel/ NF-kap­paB transcription factors. Oncogene 1999; 18(49): 6853– 6866. doi: 10.1038/ sj.onc.1203239.

14. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006; 25(51): 6680– 6684. doi: 10.1038/ sj.onc.1209954.

15. Gregor MF, Hotamisligil GS. Inflam­matory mechanisms in obesity. An­nu Rev Im­munol 2011; 29: 415– 445. doi: 10.1146/ an­nurev-im­munol-031210-101322.

16. Purkayastha S, Zhang G, Cai D. Uncoupl­­ing the mechanisms of obesity and hypertension by target­­ing hypothalamic IKK-beta and NF-kappaB. Nat Med 2011; 17(7): 883– 887. doi: 10.1038/ nm.2372.

17. Posey KA, Clegg DJ, Printz RL et al. Hypothalamic proinflam­matory lipid accumulation, inflam­mation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296(5): E1003– E1012. doi: 10.1152/ ajpendo.90377.2008.

18. Zhang X, Zhang G, Zhang H et al. Hypothalamic IKKbeta/ NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135(1): 61– 73. doi: 10.1016/ j.cel­l.2008.07.043.

19. Rahman MH, Bhusal A, Lee WH et al. Hypothalamic inflam­mation and malfunction­­ing glia in the pathophysiology of obesity and diabetes: Translational significance. Biochem Pharmacol 2018: pii: S0006-2952(18)30024. doi: 10.1016/ j.bcp.2018.01.024.

20. Thaler JP, Choi SJ, Schwartz MW et al. Hypothalamic inflam­mation and energy homeostasis: Resolv­­ing the paradox. Front Neuroendocrin 2010; 31(1): 79– 84. doi: 10.1016/ j.yfrne.2009.10.002.

21. Cesar HC, Pisani LP. Fatty-acid-mediated hypothalamic inflam­mation and epigenetic program­ming. J Nutr Biochem 2017; 42: 1– 6. doi: 10.1016/ j.jnutbio­.2016.08.008.

22. Cardinale JP, Sriramula S, Mariappan N et al. Angiotensin II-Induced hypertension is modulated by nuclear factor-kappa B in the paraventricular nucleus. Hypertension 2012; 59(1): 113– 121. doi: 10.1161/ HYPERTENSIONAHA.111.182154.

23. Erdos B, Broxson CS, K­­ing MA et al. Acute pres­sor ef­fect of central angiotensin II is mediated by NAD(P)H-oxidase-dependent superoxide production in the hypothalamic cardiovascular regulatory nuclei. J Hypertens 2006; 24(1): 109– 116.

24. Han C, Rice MW, Cai DS. Neuroinflam­matory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311(1): E32– E41. doi: 10.1152/ ajpendo.00012.2016.

25. Simonds SE, Pryor JT, Ravus­sin E et al. Leptin mediates the increase in blood pres­sure as­sociated with obesity. Cell 2014; 159(6): 1404– 1416. doi: 10.1016/ j.cel­l.2014.10.058.

26. Li P, Cui BP, Zhang LL et al. Melanocortin 3/ 4 receptors in paraventricular nucleus modulate sympathetic outflow and blood pres­sure. Exp physiol 2013; 98(2): 435– 443. doi: 10.1113/ expphysiol.2012.067256.

27. da Silva AA, do Carmo JM, Kanyicska B et al. Endogenous melanocortin system activity contributes to the elevated arterial pres­sure in spontaneously hypertensive rats. Hypertension 2008; 51(4): 884– 890. doi: 10.1161/ HYPERTENSIONAHA.107.100636.

28. Khor S, Cai DS. Hypothalamic and inflam­matory basis of hypertension. Clin Sci 2017; 131(3): 211– 223. doi: 10.1042/ Cs20160001.

29. Braun TP, Zhu XX, Szumowski M et al. Central nervous system inflam­mation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med 2011; 208(12): 2449– 2463. doi: 10.1084/ jem.20111020.

30. Ovadya Y, Krizhanovsky V. Senescent cel­ls: SASPected drivers of age-related pathologies. Biogerontology 2014; 15(6): 627– 642. doi: 10.1007/ s10522-014-9529-9.

31. Lopez-Otin C, Blasco MA, Partridge L et al. The hal­lmarks of aging. Cell 2013; 153(6): 1194– 1217. doi: 10.1016/ j.cel­l.2013.05.039.

32. Campisi J. Aging, cel­lular senescence, and cancer. An­nu Rev Physiol 2013; 75: 685– 705. doi: 10.1146/ an­nurev-physiol-030212-183653.

33. Franceschi C, Bonafe M, Valensin S et al. Inflam­mag­­ing – an evolutionary perspective on im­muno­senes­cence. Ann N Y Acad Sci 2000; 908: 244– 254.

34. Deleidi M, Jaggle M, Rubino G. Im­mune aging, dysmetabolism, and inflam­mation in neurological dis­eases. Front Neurosci 2015; 9: 172. doi: 10.3389/ fnins.2015.00172.

35. von Bernhardi R, Tichauer JE, Eugenín J. Aging-dependent changes of microglial cel­ls and their relevance for neurodegenerative disorders. J Neurochem 2010; 112(5): 1099– 1114. doi: 10.1111/ j.1471-4159.2009.06537.x.

36. Ye SM, Johnson RW. An age-related decline in interleukin-10 may contribute to the increased expres­sion of interleukin-6 in brain of aged mice. Neuroim­munomodulation 2001; 9(4): 183– 192. doi: 10.1159/ 000049025.

37. Jacobs AH, Tavitian B, consortium INMiND. Non-invasive molecular imag­­ing of neuroinflam­mation. J Cereb Blood Flow Metab 2012; 32(7): 1393– 1415. doi: 10.1038/ jcbfm.2012.53.

38. Chauveau F, Boutin H, Van Camp N et al. Nuclear imag­­ing of neuroinflam­mation: a comprehensive review of [C-11]PK11195 chal­lengers. Eur J Nucl Med Mol Imagin­­ing 2008; 35(12): 2304– 2319. doi: 10.1007/ s00259-008-0908-9.

39. Arlicot N, Katsifis A, Gar­reau L et al. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflect­­ing the degree of neuroinflam­mation in a rat model of microglial activation. Eur J Nucl Med Mol Imagin­­ing 2008; 35(12): 2203– 2211. doi: 10.1007/ s00259-008-0834-x.

40. Shukuri M, Takashima-Hirano M, Tokuda K et al. In vivo expres­sion of cyclooxygenase-1 in activated microglia and macrophages dur­­ing neuroinflam­mation visualized by PET with C-11-ketoprofen methyl ester. J Nucl Med 2011; 52(7): 1094– 1101. doi: 10.2967/ jnumed.110.084046.

41. Dol­le F, Luus C, Reynolds A et al. Radiolabel­led molecules for imag­­ing the translocator protein (18 kDa) us­­ing positron emis­sion tomography. Curr Med Chem 2009; 16(22): 2899– 2923. doi: 10.2174/ 092986709788803150.

42. Pinas V, Windhorst A, Lam­mertsma A et al. Radiolabel­led matrix metal­loproteinase (Mmp) inhibitors for in vivo imag­­ing of unstable plaques us­­ing PET and spect 1. J Label­led Comp Radiopharm 2009; 52(S1): S42– S42. doi: 10.1002/ jlcr.1627.

43. McAteer MA, Sibson NR, von zur Muhlen C et al. In vivo magnetic resonance imag­­ing of acute brain inflam­mation us­­ing microparticles of iron oxide. Nat Med 2007; 13(10): 1253– 1258. doi: 10.1038/ nm1631.

44. Shao X, Zhang HA, Rajian JR et al. I-125-Labeled gold nanorods for targeted imag­­ing of inflam­mation. ACS Nano 2011; 5(11): 8967– 8973. doi: 10.1021/ n­n203138t.

45. Saha GB, MacIntyre WJ, Go RT. Radiopharmaceuticals for brain imaging. Semin Nucl Med 1994; 24(4): 324– 349. doi: 10.1016/ S0001-2998(05)80022-4.

46. Quarantel­li M. MRI/ MRS in neuroinflam­mation: methodology and applications. Clin Transl Imag­­ing 2015; 3(6): 475– 489. doi: 10.1007/ s40336-015-0142-y.

47. Rigas A, Farmakis D, Papingiotis G et al. Hypothalamic dysfunction in heart failure: pathogenetic mechanisms and therapeutic implications. Heart Fail Rev 2018; 23(1): 55– 61. doi: 10.1007/ s10741-017-9659-7.

48. Ropel­le ER, Flores MB, Cintra DE et al. IL-6 and IL-10 anti-inflam­matory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 2010; 8(8): pii: e1000465. doi: 10.1371/ journal.pbio­.1000465.

49. Cintra DE, Ropel­le ER, Moraes JC et al. Unsaturated fatty acids revert diet-induced hypothalamic inflam­mation in obesity. PLoS One 2012; 7(1): e30571. doi: 10.1371/ journal.pone.0030571.

50. Dragano NRV, Solon C, Ramalho AF et al. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expres­sed in the hypothalamus and control energy homeostasis and inflam­mation. J Neuroinflam­mation 2017; 14(1): 91. doi: 10.1186/ s12974-017-0869-7.

51. Lira FS, Yamashita AS, Rosa JC et al. Hypothalamic inflam­mation is reversed by endurance train­­ing in anorectic-cachectic rats. Nutr Metab (Lond) 2011; 8(1): 60. doi: 10.1186/ 1743-7075-8-60.

52. al-Majid S, McCarthy DO. Resistance exercise train­­ing attenuates wast­­ing of the extensor digitorum longus muscle in mice bear­­ing the colon-26 adenocarcinoma. Biol Res Nurs 2001; 2(3): 155– 166. doi: 10.1177/ 109980040100200301.

53. DeBoer MD, Zhu XX, Levas­seur P et al. Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia. Endocrinology 2007; 148(6): 3004– 3012. doi: 10.1210/ en.2007-0016.

54. Gonzalez PV, Cragnolini AB, Schioth HB et al. Interleukin-1 beta-induced anorexia is reversed by ghrelin. Peptides 2006; 27(12): 3220– 3225. doi: 10.1016/ j.peptides.2006.09.008.

55. Duxbury MS, Waseem T, Ito H et al. Ghrelin promotes pancreatic adenocarcinoma cel­lular proliferation and invasivenes­s. Biochem Biophys Res Com­mun 2003; 309(2): 464– 468. doi: 10.1016/ j.bbrc.2003.08.024.

56. Goldstein DS. Adrenal responses to stres­s.Cell Mol Neurobio­l 2010; 30(8): 1433– 1440. doi: 10.1007/ s10571-010-9606-9.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 3

2018 Issue 3

Most read in this issue
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account