The role of microRNAs in pathogenesis of spinal muscular atrophy


Authors: Š. Aulická 1,2;  F. Siegl 2;  O. Havlín 1;  J. Šána 2;  Z. Bálintová 1;  S. Kolář 1;  K. Česká 1;  P. Jabandžiev 2,3;  H. Ošlejšková 1;  O. Slabý 2
Authors‘ workplace: Klinika dětské neurologie, LF MU a FN Brno 1;  Výzkumná skupina Ondřeje Slabého, CEITEC MU, Brno 2;  Pediatrická klinika LF MU a FN Brno 3
Published in: Cesk Slov Neurol N 2021; 84/117(4): 329-333
Category: Review Article
doi: 10.48095/cccsnn2021329

Overview

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by the selective death of lower motor neurons in the anterior horns of spinal cord. SMA is caused by mutations in the survival motor neuron 1 gene (SMN1), leading to the reduced expression of the full-length SMN protein that protects the motoneurons in the anterior horns of the spinal cord from apoptosis. The survivance of motoneurons depends beside others on motoneuron specific microRNAs (miRNAs), which control their normal development, differentiation, axonal growths, synaptogenesis and apoptosis. The main role of miRNAs is regulation of post-transcriptional gene expression. Motor neuron-specific miRNAs dysregulation in SMA might be implicated in their selective vulnerability. The detection of these miRNAs in cerebrospinal fluid and/or blood plasma might lead to the discovery of biomarkers and early diagnostics of SMA, prediction of the severity and of progression speed of the disease and monitoring of the treatment.

Keywords:

microRNA – spinal muscular atrophy – biomarkers


Sources

1. Haberlová J, Slabá A, Hedvičáková P et al. Spinální svalová atrofie – dia­gnostika, léčba, výzkum. Neurol Praxi 2016; 17 (6): 349–353. doi: 10.36290/neu.2016.073.

2. Butchbach ME. Copy number variations in the survival motor neuron genes: implications for spinal muscular atrophy and other neurodegenerative diseases. Front Mol Biosci 2016; 3: 7. doi: 10.3389/fmolb.2016.00007.

3. Magri F, Vanoli F, Corti S. MiRNA in spinal muscular atrophy pathogenesis and therapy. J Cell Mol Med 2018; 22 (2): 755–767. doi: 10.1111/jcmm.13450.

4. Kye MJ, Goncalves Ido C. The role of miRNA in motor neuron disease. Front Cell Neurosci 2014; 8: 15. doi: 10.3389/fncel.2014.00015.

5. SMA News Today. Spinal muscular atrophy and the role of microRNA. [online]. Available from URL: https: //hcp.smanewstoday.com/spinal-muscular-atrophy-and-the-role-of-microrna.

6. Hawley ZCE, Campos-Melo D, Droppelmann CA et al. MotomiRs: miRNAs in motor neuron function and disease. Front Mol Neurosci 2017; 10: 127. doi: 10.3389/ fnmol.2017.00127.

7. Chen T-H. Circulating microRNAs as potential bio­markers and therapeutic targets in spinal muscular atrophy. Ther Adv Neurol Disord 2020; 13: 175628642097995. doi: 10.1177/1756286420979954.

8. Chen T-H, Chen J-A. Multifaceted roles of microRNAs: from motor neuron generation in embryos to degeneration in spinal muscular atrophy. Elife 2019; 8: e50848. doi: 10.7554/eLife.50848.

9. Kaifer KA, Villalón E, O’Brien BS et al. AAV9-mediated delivery of miR-23a reduces disease severity in Smn2B/−SMA model mice. Hum Mol Genet 2019; 28 (19): 3199–3210. doi: 10.1093/hmg/ddz142.

10. Viswambharan V, Thanseem I, Vasu MM et al. miRNAs as bio­markers of neurodegenerative disorders. Biomark Med 2017; 11 (2): 151–167. doi: 10.2217/bmm-2016-0242.

11. Lee Y, Kim M, Han J et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23 (20): 4051–4060. doi: 10.1038/sj.emboj.7600385.

12. Lee Y, Ahn C, Han J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425 (6956): 415–419. doi: 10.1038/nature01957.

13. Han J. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18 (24): 3016–3027. doi: 10.1101/gad.1262504.

14. Bohnsack MT. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10 (2): 185–191. doi: 10.1261/rna.5167604.

15. Chendrimada TP, Gregory RI, Kumaraswamy E et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436 (7051): 740–744. doi: 10.1038/nature03868.

16. Kobayashi H, Tomari Y. RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta 2016; 1859 (1): 71–81. doi: 10.1016/j.bbagrm.2015.08.007.

17. Haramati S, Chapnik E, Sztainberg Y et al. miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci 2010; 107 (29): 13111–13116. doi: 10.1073/pnas.1006151107.

18. Miyazaki Y, Adachi H, Katsuno M et al. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med 2012; 18 (7): 1136–1141. doi: 10.1038/nm.2791.

19. Catapano F, Zaharieva I, Scoto M et al. Altered levels of microRNA-9, -206, and -132 in spinal muscular atrophy and their response to antisense oligonucleotide therapy. Mol Ther Nucleic Acids 2016; 5 (7): e331. doi: 10.1038/mtna.2016.47.

20. Murdocca M, Ciafrè S, Spitalieri P et al. SMA human iPSC-derived motor neurons show perturbed differentiation and reduced miR-335-5p expression. Int J Mol Sci 2016; 17 (8): 1231. doi: 10.3390/ijms17081231.

21. Bhinge A, Namboori SC, Bithell A et al. MiR-375 is essential for human spinal motor neuron development and may be involved in motor neuron degeneration. Stem Cells 2016; 34 (1): 124–134. doi: 10.1002/stem.2233.

22. Sison SL, Patitucci TN, Seminary ER et al. Astrocyte-produced miR-146a as a mediator of motor neuron loss in spinal muscular atrophy. Hum Mol Genet 2017; 26 (17): 3409–3420. doi: 10.1093/hmg/ddx230.

23. Kye MJ, Niederst ED, Wertz MH et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014; 23 (23): 6318–6331. doi: 10.1093/hmg/ddu350.

24. Wertz MH, Winden K, Neveu P et al. Cell-type-specific miR-431 dysregulation in a motor neuron model of spinal muscular atrophy. Hum Mol Genet 2016; 25 (11): 2168–2181. doi: 10.1093/hmg/ddw084.

25. Magri F, Vanoli F, Corti S. miRNA in spinal muscular atrophy pathogenesis and therapy. J Cell Mol Med 2017; 22 (2): 755–767. doi: 10.1111/jcmm.13450.

26. Carter JV, Galbraith NJ, Yang D et al. Blood-based microRNAs as bio­markers for the dia­gnosis of colorectal cancer: a systematic review and meta-analysis. Br J Cancer 2017; 116 (6): 762–774. doi: 10.1038/bjc.2017.12.

27. Toivonen JM, Manzano R, Oliván S et al. MicroRNA-206: a potential circulating bio­marker candidate for amyotrophic lateral sclerosis. PLoS One 2014; 9 (2): e89065. doi: 10.1371/journal.pone.0089065.

28. Perry MM, Muntoni F. Noncoding RNAs and Duchenne muscular dystrophy. Epigenomics 2016; 8 (11): 1527–1537. doi: 10.2217/epi-2016-0088.

29. Israeli D, Poupiot J, Amor F et al. Circulating miRNAs are generic and versatile therapeutic monitoring bio­markers in muscular dystrophies. Sci Rep 2016; 6 (1): 28097. doi: 10.1038/srep28097.

30. Kopkova A, Sana J, Fadrus P et al. MicroRNA isolation and quantification in cerebrospinal fluid: a comparative methodical study. PLoS One 2018; 13 (12): e0208580. doi: 10.1371/journal.pone.0208580.

31. Wojcicka A, Swierniak M, Kornasiewicz O et al. Next generation sequencing reveals microRNA isoforms in liver cirrhosis and hepatocellular carcinoma. Int J Biochem Cell Biol 2014; 53: 208–217. doi: 10.1016/j.bio­cel.2014.05.020.

32. Iwuchukwu I, Nguyen D, Sulaiman W. MicroRNA profile in cerebrospinal fluid and plasma of patients with spontaneous intracerebral hemorrhage. CNS Neurosci Ther 2016; 22 (12): 1015–1018. doi: 10.1111/cns.12656.

33. Shalaby T, Achini F, Grotzer MA. Targeting cerebrospinal fluid for discovery of brain cancer bio­markers. J Cancer Metastasis Treat 2016; 2: 176–187. doi: 10.20517/2394-4722.2016.12.

34. Sørensen SS, Nygaard A-B, Christensen T. MiRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia – an exploratory study. Transl Neurodegener 2016; 5: 6. doi: 10.1186/s40035-016-0053-5.

35. Usuba W, Urabe F, Yamamoto Y et al. Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci 2019; 110 (1): 408–419. doi: 10.1111/cas.13856.

36. Zhu X-L, Ren L-F, Wang H-P et al. Plasma microRNAs as potential new bio­markers for early detection of early gastric cancer. World J Gastroenterol 2019; 25 (13): 1580–1591. doi: 10.3748/wjg.v25.i13.1580.

37. Wang L, Liu Y, Du L et al. Identification and validation of reference genes for the detection of serum microRNAs by reverse transcription-quantitative polymerase chain reaction in patients with bladder cancer. Mol Med Rep 2015; 12 (1): 615–622. doi: 10.3892/mmr.2015.3428.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 4

2021 Issue 4

Most read in this issue
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account