Why do the nerve tracts decussate? Basic principles of the vertebrate brain organization

Authors: R. Bartoš *1,2;  D. Ospalík 3;  A. Hejčl 1;  A. Malucelli 1;  M. Sameš 1;  V. Němcová *2
Authors‘ workplace: Veronika Němcová a Robert Bartoš, se na minimonografii podíleli stejným, dílem. *;  Neurochirurgická klinika UJEP, Masarykova, nemocnice, KZ a. s., Ústí nad, Labem 1;  Anatomický ústav 1. LF UK, Praha 2;  Neurologické oddělení, Masarykova, nemocnice, KZ a. s., Ústí nad Labem 3
Published in: Cesk Slov Neurol N 2021; 84/117(4): 316-328
Category: Minimonography
doi: 10.48095/cccsnn2021316


The fact that some brain tracts decussate accompanies medical students and neurologists and neurosurgeons during the whole period of their study, as well as in their work “careers”. We take the decussation of the pyramidal tract, anterolateral, lemniscal systems and visual pathways for granted and we describe contralateral hemipareses, hemiplegia, including alternating ones, Brown-Séquard’s spinal cord hemisyndrome and homonymous hemianopsia. We understand the central lesion of the facial nerve, presenting only with contralateral paresis of mouth muscles while the ability to close the eye is preserved. The other tracts which cross and in which we do not often realize this are for example the tracts of the dentate-rubro-olivary (Guillain-Mollaret’s) triangle, lemniscus lateralis (corpus trapezoideum) conducting hearing, tractus pontocerebellaris, and tractus dentatothalamicus (decussatio pedunculi cerebellaris superioris). The trochlear nerve, tectospinal tract (decussatio tegmenti dorsalis) and rubrospinal tract (decussation tegmenti ventralis) decussate in the mesencephalon, reticulospinal tracts are both crossed and also uncrossed and on the contrary the crossing of the interstitiospinal tract from the ncl. of Cajal and vestibulospinal tract from the ncl. of. Dieters are not present. We questioned this finding, so we conducted the review of the pertinent literature concerning the theories why the tracts cross, we added the mnemotechnic predator theory of the silur sea, and we concentrated on the phylogenetic differences in the architecture of vertebrate brains, with the help of dissection of brain cadavers from rabbit (Oryctolagus cuniculus), duck (Anas platyrhynchos domesticus) and carp (Cyprinus carpio). Based on our results, we are not able to answer all of the above-mentioned and further related questions, hence we present them to the reader in the form of a minimonography.


brain tract – comparative anatomy – Nervous system – corticospinal tract – optic chiasm – evolution


1. Ramón y Cajal S. Texture of the nervous system of man and the vertebrates. J Neurol Neurosurg Psychiatry 2001; 70 (3): 421. doi: 10.1136/jnnp.70.3.421c.

2. Mora C, Velásquez C, Martino J. The neural pathway midline crossing theory: a historical analysis of Santiago Rámon y Cajal’s contribution on cerebral localization and on contralateral forebrain organization. Neurosurg Focus 2019; 47 (3): E10. doi: 10.3171/2019.6. FOCUS19341.

3. Vulliemoz S, Raineteau O, Jabaudon D. Reaching beyond the midline: why are human brains cross wired? Lancet Neurol 2005; 4 (2): 87–99. doi: 10.1016/S1474-4422 (05) 00990-7.

4. Cajal RM. Estructura del kiasma óptico y teoría general de los entrecruzamientos de las vías nerviosas. Rev Trim Micrografica 1898; 3: 15–66.

5. Kinsbourne M. Somatic twist: A model for the evolution of decussation. Neuropsychology 2013; 27 (5): 511–515. doi: 10.1037/a0033662.

6. de Lussanet MHE, Osse JWM. An ancestral axial twist explains the contralateral forebrain and the optic chiasm in vertebrates. Animal Biol 2012; 62 (2): 193–216. doi: 10.1163/157075611X617102.

7. de Lussanet MH, Osse JW. Decussation as an axial twist: a comment on Kinsbourne (2013). Neuropsychology 2015; 29 (5): 713–714. doi: 10.1037/neu0000163.

8. Zalocusky K. Ask a neuroscientist: why does the nervous system decussate? [online]. Available from URL: https: //neuroscience.stanford.edu/news/ask-neuroscientist-why-does-nervous-system-decussate.

9. Shinbrot T, Young W. Why decussate? Topological constraints on 3D wiring. Anat Rec (Hoboken) 2008; 291 (10): 1278–1292. doi: 10.1002/ar.20731.

10. Long H, Sabatier C, Ma L et al. Conserved roles for slit and Robo proteins in midline commissural axon guidance. Neuron 2004; 42 (2): 213–223. doi: 10.1016/s0896-6273 (04) 00179-5.

11. Sabatier C, Plump AS, Ma L et al. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 2004; 117 (2): 157–169. doi: 10.1016/s0092-8674 (04) 00303-4.

12. Neuhaus-Follini A, Bashaw GJ. Crossing the embryonic midline: molecular mechanisms regulating axon responsiveness at an intermediate target. Wiley Interdiscip Rev Dev Biol 2015; 4 (4): 377–389. doi: 10.1002/wdev.185.

13. Gunderson CH, Solitare GB. Mirror movements in patients with the Klippel-Feil syndrome. Neuropathologic observations. Arch Neurol 1968; 18 (6): 675–679. doi: 10.1001/archneur.1968.00470360097009.

14. Danek A, Heye B, Schroedter R. Cortically evoked motor responses in patients with Xp22.3-linked Kallmann’s syndrome and in female gene carriers. Ann Neurol 1992; 31 (3): 299–304. doi: 10.1002/ana.410310312.

15. Mayston MJ, Harrison LM, Quinton R et al. Mirror movements in X-linked Kallmann’s syndrome. I. A neurophysiological study. Brain 1997; 120 (Pt 7): 1199–1216. doi: 10.1093/brain/120.7.1199.

16. Farmer SF, Harrison LM, Mayston MJ et al. Abnormal cortex-muscle interactions in subjects with X-linked Kallmann’s syndrome and mirror movements. Brain 2004; 127 (Pt 2): 385–397. doi: 10.1093/brain/awh047.

17. Jen JC, Chan WM, Bosley TM et al. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 2004; 304 (5676): 1509–1513. doi: 10.1126/science.1096437.

18. Sharpe JA, Silversides JL, Blair RD. Familial paralysis of horizontal gaze: associated with pendular nystagmus, progressive scoliosis, and facial contraction with myokymia. Neurology 1975; 25 (11): 1035–1040. doi: 10.1212/wnl.25.11.1035.

19. Marillat V, Sabatier C, Failli V. The Slit receptor Rig-1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 2004; 43 (1): 69–79. doi: 10.1016/j.neuron.2004.06.018.

20. Sarnat HB, Netsky MG. Evolution of the nervous system. New York, NY: Oxford University Press 1974.

21. Butler A. Comparative vertebrate neuroanatomy evolution and adaptation. 2nd ed. Hoboken (NJ): Wiley-Interscience 2005.

22. Edinger L. Vorlesungen űber den Bau der Nervösen Zentralorgane des Menschen und der Tiere: fűr Ärzte und Studierende. Leipzig: Vogel 1908.

23. Kappers A, Huber CU, Crosby CG. The comparative anatomy of the nervous system of vertebrates including man. New York: Macmillan 1936.

24. Reiner A, Perkel DJ, Bruce LL. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 2004; 473 (3): 377–414. doi: 10.1002/cne.20118.

25. Jarvis ED, Yu J, Rivas MV et al. Global view of the functional molecular organization of the avian cere­brum: Mirror images and functional columns. J Comp Neurol 2013; 521 (16): 3614–3665. doi: 10.1002/cne.23 404.

26. Yamamoto N, Nakayama T, Hagio H. Descending pathways to the spinal cord in teleosts incomparison with mammals, with special attention to rubrospinal pathways. Dev Growth Differ 2017; 59 (4): 188–193. doi: 10.1111/dgd.12355.

27. Fetcho JR. Spinal network of the mauthner cell (part 1 of 2). Brain Behav Evol 1991; 37 (5): 298–306. doi: 10.1159/000114367

Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 4

2021 Issue 4

Most read in this issue
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account