#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Normotenzní hydrocefalus


Authors: P. Skalický 1,2 ;  A. Mládek- 1 3;  O. Bradáč 1,2
Authors‘ workplace: Neurochirurgická klinika dětí a dospělých 2. LF UK a FN Motol, Praha 1;  Neurochirurgická a neuroonkologická klinika 1. LF UK a ÚVN – VFN, Praha 2;  ČVUT, Praha 3
Published in: Cesk Slov Neurol N 2021; 84(6): 512-533
Category: Minimonography
doi: https://doi.org/10.48095/cccsnn2021512

Overview

The mini-monograph presents a comprehensive view on normal pressure hydrocephalus (NPH). NPH is a clinical diagnosis developed due to altered behavior of CSF within the intracranial space. The clinical manifestation of NPH includes the typical Adams-Hakim triad – gait disorder, cognitive deficit, urinary incontinence – with about half of the patients not having the complete triad. MRI shows ventriculomegaly, often with disproportion in the size of subarachnoid spaces (dilated Sylvian fissures, high convexity tightness) without an obstruction in CSF flow. From the point of therapy, mild cortical atrophy or the occurrence of chronic ischemic changes is to some extent accepted. The basic attribute of NPH is the presence of normal CSF pressure during lumbar puncture, but with the help of special invasive tests the alteration of CSF behavior within the intracranial space can be measured with a significant estimated accuracy (lumbar infusion test, intracranial pressure monitoring). Selection of surgical candidates is in most cases performed on the basis of predictive CSF diversion tests (tap test, extended lumbar drainage). The pathophysiology of the most common idiopathic form of NPH is only partially explained despite more than 50 years from the first findings. Idiopathic form of NPH typically arises at an advanced age, and thus it is an important differential diagnosis of neurodegenerative diseases. The importance of the diagnosis increases with the fact that the natural course of the disease could be to a large extent modified by surgical treatment in the form of implantation of a CSF shunt system a ventriculo-peritoneal shunt (in most cases).

Keywords:

dementia – normal pressure hydrocephalus – Hakim- -Adams triad – DESH – neurodegenerative disease


Sources

1. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 1965; 2 (4): 307–327. doi: 10.1016/0022-510x (65) 90016-x.

2. Hashimoto M, Ishikawa M, Mori E et al. Dia­gnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 2010; 7: 18. doi: 10.1186/1743-8454-7-18.

3. Marmarou A, Bergsneider M, Relkin N et al. Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction. Neurosurgery 2005; 57 (3 Suppl): S1–3. doi: 10.1227/01.NEU.0000168188.25559.0E.

4. Patterson C. World Alzheimer report 2018. Alzheimer’s Disease International 2018.

5. Relkin N, Marmarou A, Klinge P et al. Dia­gnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005; 57 (3 Suppl): S4–16. doi: 10.1227/01.NEU.0000168185.29659.C5.

6. Martín-Láez R, Caballero-Arzapalo H, López-Menéndez LÁ et al. Epidemiology of idiopathic normal pressure hydrocephalus: a systematic review of the literature. World Neurosurg 2015; 84 (6): 2002–2009. doi: 10.1016/j.wneu.2015.07.005.

7. Lemcke J, Stengel D, Stockhammer F et al. Nationwide incidence of normal pressure hydrocephalus (NPH) assessed by insurance claim data in Germany. Open Neurol J 2016; 10: 15–24. doi: 10.2174/1874205X01610010015.

8. Reddy GK, Bollam P, Caldito G. Long-term outcomes of ventriculoperitoneal shunt surgery in patients with hydrocephalus. World Neurosurg 2014; 81 (2): 404–410. doi: 10.1016/j.wneu.2013.01.096.

9. Giordan E, Palandri G, Lanzino G et al. Outcomes and complications of different surgical treatments for idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. J Neurosurg 2018; 1–13. doi: 10.3171/2018.5.JNS1875.

10. Pujari S, Kharkar S, Metellus P et al. Normal pressure hydrocephalus: long-term outcome after shunt surgery. J Neurol Neurosurg Psychiatry 2008; 79 (11): 1282–1286. doi: 10.1136/jnnp.2007.123620.

11. Nakajima M, Yamada S, Miyajima M et al. Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 2021; 61 (2): 63–97. doi: 10.2176/nmc.st.2020-0292.

12. Fasano A, Espay AJ, Tang-Wai DF et al. Gaps, controversies, and proposed roadmap for research in normal pressure hydrocephalus. Mov Disord 2020; 35 (11): 1945–1954. doi: 10.1002/mds.28251.

13. Foltz EL, Ward AA. Communicating hydrocephalus from subarachnoid bleeding. J Neurosurg 1956; 13 (6): 546–566. doi: 10.3171/jns.1956.13.6.0546.

14. Wallenstein MB, McKhann GM. Salomón Hakim and the discovery of normal-pressure hydrocephalus. Neurosurgery 2010; 67 (1): 155–159. doi: 10.1227/01.NEU. 0000370058.12120.0E.

15. Adams RD, Fisher CM, Hakim S et al. Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure. New Eng J Med 1965; 273 (3): 117–126. doi: 10.1056/NEJM196507152730301.

16. Daou B, Klinge P, Tjoumakaris S et al. Revisiting secondary normal pressure hydrocephalus: does it exist? A review. Neurosurg Focus 2016; 41 (3): E6. doi: 10.3171/2016.6.FOCUS16189.

17. Marmarou A, Foda MA, Bandoh K et al. Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for dia­gnosis using CSF dynamics. J Neurosurg 1996; 85 (6): 1026–1035. doi: 10.3171/jns.1996.85.6.1026.

18. Wang C, Du H, Yin L et al. Analysis of related factors affecting prognosis of shunt surgery in patients with secondary normal pressure hydrocephalus. Chin J Traumatol 2013; 16 (4): 221–224.

19. Thomsen AM, Børgesen SE, Bruhn P et al. Prognosis of dementia in normal-pressure hydrocephalus after a shunt operation: prognosis of dementia NPH. Ann Neurol 1986; 20 (3): 304–310. doi: 10.1002/ana.410200 306.

20. Marmarou A, Young HF, Aygok GA et al. Dia­gnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg 2005; 102 (6): 987–997. doi: 10.3171/jns.2005.102.6.0987.

21. Pirouzmand F, Tator CH, Rutka J. Management of hydrocephalus associated with vestibular schwannoma and other cerebellopontine angle tumors. Neurosurgery 2001; 48 (6): 1246–1253. doi: 10.1097/00006123-200106000-00010.

22. Keong NCH, Pena A, Price SJ et al. Imaging normal pressure hydrocephalus: theories, techniques, and challenges. Neurosurg Focus 2016; 41 (3): E11. doi: 10.3171/2016.7.FOCUS16194.

23. Pappenheimer JR, Heisey SR, Jordan EF et al. Perfusion of the cerebral ventricular system in unanesthetized goats. Am J Physiol 1962; 203 (5): 763–774. doi: 10.1152/ajplegacy.1962.203.5.763.

24. Pappenheimer JR, Miller TB, Goodrich CA. Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc Natl Acad Sci U S A 1967; 58 (2): 513–517. doi: 10.1073/pnas.58.2.513.

25. Bering EA, Sato O. Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 1963; 20 (12): 1050–1063. doi: 10.3171/jns.1963.20.12.1050.

26. Qvarlander S, Ambarki K, Wåhlin A et al. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta Neurol Scand 2017; 135 (5): 576–584. doi: 10.1111/ane.12636.

27. Oliveira LM, Nitrini R, Román GC. Normal-pressure hydrocephalus: a critical review. Dementia Neuropsychol 2019; 13 (2): 133–143. doi: 10.1590/1980-57642018dn13-020001.

28. Oliveira MF, Oliveira JRM, Rotta JM et al. Psychiatric symptoms are present in most of the patients with idiopathic normal pressure hydrocephalus. Arq Neuropsiquiatr 2014; 72 (6): 435–438. doi: 10.1590/0004-282x20140047.

29. Wang Z, Zhang Y, Hu F et al. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020; 26 (12): 1230–1240. doi: 10.1111/cns.13526.

30. Buishas J, Gould IG, Linninger AA. A computational model of cerebrospinal fluid production and reabsorption driven by Starling forces. Croat Med J 2014; 55 (5): 481–497. doi: 10.3325/cmj.2014.55.481.

31. Israelsson H, Carlberg B, Wikkelsö C et al. Vascular risk factors in INPH: a prospective case-control study (the INPH-CRasH study). Neurology 2017; 88 (6): 577–585. doi: 10.1212/WNL.0000000000003583.

32. Chrysikopoulos H. Idiopathic normal pressure hydrocephalus: thoughts on etiology and pathophysiology. Med Hypotheses 2009; 73 (5): 718–724. doi: 10.1016/ j.mehy.2009.04.044.

33. Hamilton RB, Scalzo F, Baldwin K et al. Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus. Fluids Barriers CNS 2019; 16 (1): 2. doi: 10.1186/s12987-019-0122-0.

34. Yatsushiro S, Sunohara S, Hayashi N et al. Cardiac-driven pulsatile motion of intracranial cerebrospinal fluid visualized based on a correlation mapping technique. Magn Reson Med Sci 2018; 17 (2): 151–160. doi: 10.2463/mrms.mp.2017-0014.

35. Eide PK, Stanisic M. Cerebral microdialysis and intracranial pressure monitoring in patients with idiopathic normal-pressure hydrocephalus: association with clinical response to extended lumbar drainage and shunt surgery. J Neurosurg 2010; 112 (2): 414–424. doi: 10.3171/2009.5.JNS09122.

36. Marmarou A, Shulman K, Rosende RM. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 1978; 48 (3): 332–344. doi: 10.3171/jns.1978.48.3.0332.

37. Kayis C, Aygok GA. Cerebrospinal fluid dynamics and infusion techniques. In: Adult hydrocephalus. Cambridge: Cambridge University Press 2014: 139–149.

38. Ahn JH, Cho H, Kim J-H et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 2019; 572 (7767): 62–66. doi: 10.1038/s41586-019- 1419-5.

39. Reeves BC, Karimy JK, Kundishora AJ et al. Glymphatic system impairment in Alzheimer‘s disease and idiopathic normal pressure hydrocephalus. Trends Mol Med 2020; 26 (3): 285–295. doi: 10.1016/j.molmed.2019.11.008.

40. Kiviniemi V, Wang X, Korhonen V et al. Ultra-fast magnetic resonance encephalography of physiological brain activity – glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 2016; 36 (6): 1033–1045. doi: 10.1177/0271678X15622047.

41. Ringstad G, Valnes LM, Dale AM et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 2018; 3 (13): e121537. doi: 10.1172/jci.insight.121537.

42. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 2017; 140 (10): 2691–2705. doi: 10.1093/brain/awx191.

43. Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab 2019; 39 (7): 1355–1368. doi: 10.1177/0271678X18760974.

44. Eide PK, Valnes LM, Pripp AH et al. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 2020; 40 (9): 1849–1858. doi: 10.1177/0271678X19874790.

45. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018; 17 (11): 1016–1024. doi: 10.1016/s1474-4422 (18) 30 318-1.

46. Eide PK, Valnes LM, Pripp AH et al. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 2020; 40 (9): 1849–1858. doi: https: //doi.org/10.1177/0271678x19874790.

47. Hasan-Olive MM, Enger R, Hansson H-A et al. Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus. Glia 2019; 67 (1): 91–100. doi: 10.1002/glia.23528.

48. Xie L, Kang H, Xu Q et al. Sleep drives metabolite clearance from the adult brain. Science 2013; 342 (6156): 373–377. doi: 10.1126/science.1241224.

49. Román GC, Jackson RE, Fung SH et al. Sleep-disordered breathing and idiopathic normal-pressure hydrocephalus: recent pathophysiological advances. Curr Neurol Neurosci Rep 2019; 19 (7): 39. doi: 10.1007/s11910-019-0952-9.

50. Ammar A, Abbas F, Al Issawi W et al. Idiopathic normal-pressure hydrocephalus syndrome: is it understood? The comprehensive idiopathic normal-pressure hydrocephalus theory (CiNPHT). In: Hydrocephalus: what do we know? And what do we still not know? New York, USA: Springer 2017: 67–82.

51. Bräutigam K, Vakis A, Tsitsipanis C. Pathogenesis of idiopathic normal pressure hydrocephalus: a review of knowledge. J Clin Neurosci 2019; 61: 10–13. doi: 10.1016/ j.jocn.2018.10.147.

52. Akai K, Uchigasaki S, Tanaka U et al. Normal pressure hydrocephalus. Neuropathological Study. Acta Pathol Jpn 1987; 37 (1): 97–110.

53. Preuss M, Hoffmann KT, Reiss-Zimmermann M et al. Updated physiology and pathophysiology of CSF circulation – the pulsatile vector theory. Childs Nerv Syst 2013; 29 (10): 1811–1825. doi: 10.1007/s00381-013-2219-0.

54. Mascalchi M, Arnetoli G, Inzitari D et al. Cine-MR imaging of aqueductal CSF flow in normal pressure hydrocephalus syndrome before and after CSF shunt. Acta Radiol 1993; 34 (6): 586–592.

55. Battal B, Kocaoglu M, Bulakbasi N et al. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol 2011; 84 (1004): 758–765. doi: 10.1259/bjr/66206791.

56. Sass LR, Khani M, Natividad GC et al. A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets. Fluids Barriers CNS 2017; 14 (1): 36. doi: 10.1186/s12987-017-0085-y.

57. Hentschel S, Mardal K-A, Løvgren AE et al. Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. AJNR Am J Neuroradiol 2010; 31 (6): 997–1002. doi: 10.3174/ajnr.A1995.

58. Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 2013; 91 (9): 1117–1132. doi: 10.1002/jnr.23238.

59. Portenoy RK, Berger A, Gross E. Familial occurrence of idiopathic normal-pressure hydrocephalus. Arch Neurol 1984; 41 (3): 335–337. doi: 10.1001/archneur.1984.04050150117029.

60. Sato H, Takahashi Y, Kimihira L et al. A segmental copy number loss of the SFMBT1 gene is a genetic risk for shunt-responsive, idiopathic normal pressure hydrocephalus (iNPH): a case-control study. PLoS One 2016; 11 (11): e0166615. doi: 10.1371/journal.pone.0166615.

61. Korhonen VE, Helisalmi S, Jokinen A et al. Copy number loss in SFMBT1 is common among Finnish and Norwegian patients with iNPH. Neurol Genet 2018; 4 (6): e291. doi: 10.1212/NXG.0000000000000291.

62. Morimoto Y, Yoshida S, Kinoshita A et al. Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology 2019; 92 (20): e2364–e2374. doi: 10.1212/WNL.0000000000007505.

63. Yang HW, Lee S, Yang D et al. Deletions in CWH43 cause idiopathic normal pressure hydrocephalus. EMBO Mol Med 2021; 13 (3): e13249. doi: 10.15252/emmm.202013249.

64. Grasso G, Torregrossa F, Leone L et al. Long-term efficacy of shunt therapy in idiopathic normal pressure hydrocephalus. World Neurosurg 2019; 129: e458–e463. doi: 10.1016/j.wneu.2019.05.183.

65. Morel E, Armand S, Assal F et al. Is frontal gait a myth in normal pressure hydrocephalus? J Neurol Sci 2019; 402: 175–179. doi: 10.1016/j.jns.2019.05.029.

66. Morel E, Armand S, Assal F et al. Deconstructing or reestablishing frontal gait in normal pressure hydrocephalus? J Neurol Sci 2019; 404: 66–67. doi: 10.1016/j.jns.2019.07.006.

67. de Souza RKM, da Rocha SFB, Martins RT et al. Gait in normal pressure hydrocephalus: characteristics and effects of the CSF tap test. Arq Neuropsiquiatr 2018; 76 (5): 324–331. doi: 10.1590/0004-282X20180037.

68. Stolze H, Kuhtz-Buschbeck JP, Drücke H et al. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson‘s disease. J Neurol Neurosurg Psychiatry 2001; 70 (3): 289–297. doi: 10.1136/jnnp.70.3.289.

69. Gallagher R, Marquez J, Osmotherly P. Clinimetric properties and minimal clinically important differences for a battery of gait, balance, and cognitive examinations for the tap test in idiopathic normal pressure hydrocephalus. Neurosurgery 2019; 84 (6): E378–E384. doi: 10.1093/neuros/nyy286.

70. Ishii M, Kawamata T, Akiguchi I et al. Parkinsonian symptomatology may correlate with CT findings before and after shunting in idiopathic normal pressure hydrocephalus. Parkinsons Dis 2010; 2010: 201089. doi: 10.4061/2010/201089.

71. Bugalho P, Guimarães J. Gait disturbance in normal pressure hydrocephalus: a clinical study. Parkinsonism Relat Disord 2007; 13 (7): 434–437. doi: 10.1016/j.parkreldis.2006.08.007.

72. Allali G, Laidet M, Armand S et al. Brain comorbidities in normal pressure hydrocephalus. Eur J Neurol 2018; 25 (3): 542–548. doi: 10.1111/ene.13543.

73. Yamada S, Ishikawa M, Miyajima M et al. Timed up and go test at tap test and shunt surgery in idiopathic normal pressure hydrocephalus. Neurol Clin Pract 2017; 7 (2): 98–108. doi: 10.1212/CPJ.0000000000000334.

74. Boon AJW, Tans JT, Delwel EJ et al. Dutch normal-pressure hydrocephalus study: randomized comparison of low- and medium-pressure shunts. J Neurosurg 1998; 88 (3): 490–495. doi: 10.3171/jns.1998.88.3.0490.

75. Ravdin LD, Katzen HL, Jackson AE et al. Features of gait most responsive to tap test in normal pressure hydrocephalus. Clin Neurol Neurosurg 2008; 110 (5): 455–461. doi: 10.1016/j.clineuro.2008.02.003.

76. Yamada S, Ishikawa M, Miyajima M et al. Disease duration: the key to accurate CSF tap test in iNPH. Acta Neurol Scand 2017; 135 (2): 189–196. doi: 10.1111/ane.12580.

77. Allali G, Laidet M, Armand S et al. Apathy in idiopathic normal pressure hydrocephalus: a marker of reversible gait disorders. Int J Geriatr Psychiatry 2018; 33 (5): 735–742. doi: 10.1002/gps.4847.

78. Ishikawa M, Yamada S, Yamamoto K. Agreement study on gait assessment using a video-assisted rating method in patients with idiopathic normal-pressure hydrocephalus. PLoS One 2019; 14 (10): e0224202. doi: 10.1371/journal.pone.0224202.

79. Skalický P, Vlasák A, Mládek A et al. Role of DESH, callosal angle and cingulate sulcus sign in prediction of gait responsiveness after shunting in iNPH patients. J Clin Neurosci 2021; 83: 99–107. doi: 10.1016/j.jocn.2020.11.020.

80. Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 1994; 6 (4): 358–370. doi: 10.1176/jnp.6.4.358.

81. Boon AJ, Tans JT, Delwel EJ et al. Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 1997; 87 (5): 687–693. doi: 10.3171/jns.1997.87.5.0687.

82. Iddon JL, Pickard JD, Cross JJ et al. Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer‘s disease: a pilot study. J Neurol Neurosurg Psychiatry 1999; 67 (6): 723–732. doi: 10.1136/jnnp.67.6.723.

83. Bugalho P, Alves L, Miguel R et al. Profile of cognitive dysfunction and relation with gait disturbance in normal pressure hydrocephalus. Clin Neurol Neurosurg 2014; 118: 83–88. doi: 10.1016/j.clineuro.2014.01.006.

84. Ogino A, Kazui H, Miyoshi N et al. Cognitive impairment in patients with idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 2006; 21 (2): 113–119. doi: 10.1159/000090510.

85. Walchenbach R, Geiger E, Thomeer RTWM et al. The value of temporary external lumbar CSF drainage in predicting the outcome of shunting on normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 2002; 72 (4): 503–506. doi: 10.1136/jnnp.72.4.503.

86. Luikku AJ, Hall A, Nerg O et al. Multimodal analysis to predict shunt surgery outcome of 284 patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2016; 158 (12): 2311–2319. doi: 10.1007/s00701-016-2980-4.

87. Picascia M, Pozzi NG, Todisco M et al. Cognitive disorders in normal pressure hydrocephalus with initial parkinsonism in comparison with de novo Parkinson‘s disease. Eur J Neurol 2019; 26 (1): 74–79. doi: 10.1111/ene.13766.

88. Devito EE, Pickard JD, Salmond CH et al. The neuropsychology of normal pressure hydrocephalus (NPH). Br J Neurosurg 2005; 19 (3): 217–224. doi: 10.1080/02688690500201838.

89. Skalický P, Mládek A, Vlasák A et al. Normal pressure hydrocephalus – an overview of pathophysiological mechanisms and dia­gnostic procedures. Neurosurg Rev 2020; 43 (6): 1451–1464. doi: 10.1007/s10143-019-01201-5.

90. Saito M, Nishio Y, Kanno S et al. Cognitive profile of idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra 2011; 1 (1): 202–211. doi: 10.1159/000328924.

91. Hellström P, Klinge P, Tans J et al. A new scale for assessment of severity and outcome in iNPH. Acta Neurol Scand 2012; 126 (4): 229–237. doi: 10.1111/j.1600-0404.2012.01677.x.

92. Matsuoka T, Kawano S, Fujimoto K et al. Characteristics of cognitive function evaluation using the Montreal cognitive assessment in a cerebrospinal fluid tap test in patients with idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 2019; 186: 105524. doi: 10.1016/j.clineuro.2019.105524.

93. Sakakibara R, Kanda T, Sekido T et al. Mechanism of bladder dysfunction in idiopathic normal pressure hydrocephalus. Neurourol Urodyn 2008; 27 (6): 507–510. doi: 10.1002/nau.20547.

94. Paranathala MP, Sitsapesan H, Green AL et al. Idiopathic normal pressure hydrocephalus: an important differential dia­gnosis. Br J Hosp Med 2013; 74 (10): 564–570. doi: 10.12968/hmed.2013.74.10.564.

95. Kogan MI, Zachoval R, Ozyurt C et al. Epidemiology and impact of urinary incontinence, overactive bladder, and other lower urinary tract symptoms: results of the EPIC survey in Russia, Czech Republic, and Turkey. Curr Med Res Opin 2014; 30 (10): 2119–2130. doi: 10.1185/03007995.2014.934794.

96. Klausner AP, Steers WD. The neurogenic bladder: an update with management strategies for primary care physicians. Med Clin North Am 2011; 95 (1): 111–120. doi: 10.1016/j.mcna.2010.08.027.

97. Krzastek SC, Bruch WM, Robinson SP et al. Characterization of lower urinary tract symptoms in patients with idiopathic normal pressure hydrocephalus. Neurourol Urodyn 2017; 36 (4): 1167–1173. doi: 10.1002/nau.23084.

98. Gallia GL, Rigamonti D, Williams MA. The dia­gnosis and treatment of idiopathic normal pressure hydrocephalus. Nat Clin Pract Neurol 2006; 2 (7): 375–381. doi: 10.1038/ncpneuro0237.

99. Krzastek SC, Robinson SP, Young HF et al. Improvement in lower urinary tract symptoms across multiple domains following ventriculoperitoneal shunting for idiopathic normal pressure hydrocephalus. Neurourol Urodyn 2017; 36 (8): 2056–2063. doi: 10.1002/nau.23235.

100. Chung JH, Lee JY, Kang DH et al. Efficacy and safety of solifenacin to treat overactive bladder symptoms in patients with idiopathic normal pressure hydrocephalus: an open-label, multicenter, prospective study. Neurourol Urodyn 2012; 31 (7): 1175–1180. doi: 10.1002/nau.22234.

101. Pinner G, Johnson H, Bouman P et al. Psychiatric manifestations of normal-pressure hydrocephalus: a short review and unusual case. Int Psychogeriatr 1997; 9 (4): 465–470. doi: 10.1017/s1041610297004602.

102. Israelsson H, Allard P, Eklund A et al. Symptoms of depression are common in patients with idiopathic normal pressure hydrocephalus: the INPH-CRasH study. Neurosurgery 2016; 78 (2): 161–168. doi: 10.1227/NEU.0000000000001093.

103. Dewan MJ, Bick PA. Normal pressure hydrocephalus and psychiatric patients. Biol Psychiatry 1985; 20 (10): 1127–1131. doi: 10.1016/0006-3223 (85) 90012-5.

104. Yoshino Y, Yoshida T, Mori T et al. Risk of idiopathic normal pressure hydrocephalus in older inpatients with schizophrenia. Int Psychogeriatr 2016; 28 (5): 863–868. doi: 10.1017/S1041610215001763.

105. Vanhala V, Junkari A, Korhonen VE et al. Prevalence of schizophrenia in idiopathic normal pressure hydrocephalus. Neurosurgery 2019; 84 (4): 883–889. doi: 10.1093/neuros/nyy147.

106. Missori P, Scollato A, Formisano R et al. Restoration of sexual activity in patients with chronic hydrocephalus after shunt placement. Acta Neurochir (Wien) 2009; 151 (10): 1241–1244. doi: 10.1007/s00701-009-0331-4.

107. Lemcke J, Meier U. Idiopathic normal pressure hydrocephalus (iNPH) and co-morbidity: an outcome analysis of 134 patients. Acta Neurochir Suppl 2012; 114: 255–259. doi: 10.1007/978-3-7091-0956-4_50.

108. Jaraj D, Wikkelsö C, Rabiei K et al. Mortality and risk of dementia in normal-pressure hydrocephalus: a population study. Alzheimers Dement 2017; 13 (8): 850–857. doi: 10.1016/j.jalz.2017.01.013.

109. Toma AK, Stapleton S, Papadopoulos MC et al. Natural history of idiopathic normal-pressure hydrocephalus. Neurosurg Rev 2011; 34 (4): 433–438. doi: 10.1007/s10143-011-0316-7.

110. Børgesen SE, Gjerris F, Sørensen SC. Cerebrospinal fluid conductance and compliance of the craniospinal space in normal-pressure hydrocephalus. J Neurosurg 1979; 51 (4): 521–525. doi: 10.3171/jns.1979.51.4.0521.

111. Evans WA. An encephalographic ratio for estimating ventricular enlargment and cerebral atrophy. Arch Neurol Psychiatry 1942; 47 (6): 931–937. doi: 10.1001/archneurpsyc.1942.02290060069004.

112. Toma AK, Holl E, Kitchen ND et al. Evans‘ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 2011; 68 (4): 939–944. doi: 10.1227/NEU.0b013e318208f5e0.

113. Bateman GA, Brown KM. The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go? Childs Nerv Syst 2012; 28 (1): 55–63. doi: 10.1007/s00381-011-1617-4.

114. Børgesen SE, Gyldensted C, Gjerris F et al. Computed tomography and pneumoencephalography compared to conductance to outflow of CSF in normal pressure hydrocephalus. Neuroradiology 1980; 20 (1): 17–22. doi: 10.1007/bf00346856.

115. Lehnert BE, Rahbar H, Relyea-Chew A et al. Detection of ventricular shunt malfunction in the ED: relative utility of radiography, CT, and nuclear imaging. Emerg Radiol 2011; 18 (4): 299–305. doi: 10.1007/s10140-011-0955-6.

116. Lemcke J, Meier U. Improved outcome in shunted iNPH with a combination of a codman hakim programmable valve and an aesculap-miethke shuntassistant. Cent Eur Neurosurg 2010; 71 (3): 113–116. doi: 10.1055/s-0029-1241179.

117. Klinge P, Marmarou A, Bergsneider M et al. Outcome of shunting in idiopathic normal-pressure hydrocephalus and the value of outcome assessment in shunted patients. Neurosurgery 2005; 57 (3 Suppl): S40–52. doi: 10.1227/01.NEU.0000168187.01077.2F.

118. Meier U, Mutze S. Correlation between decreased ventricular size and positive clinical outcome following shunt placement in patients with normal-pressure hydrocephalus. J Neurosurg 2004; 100 (6): 1036–1040. doi: 10.3171/jns.2004.100.6.1036.

119. Pachatouridis D, Alexiou GA, Mihos E et al. The value of programmable shunt valves for the management of subdural collections in patients with hydrocephalus. ScientificWorldJournal 2013; 2013: 461896. doi: 10.1155/2013/461896.

120. Krauss JK, Regel JP, Vach W et al. White matter lesions in patients with idiopathic normal pressure hydrocephalus and in an age-matched control group: a comparative study. Neurosurgery 1997; 40 (3): 491–495. doi: 10.1097/00006123-199703000-00011.

121. Momjian S, Owler BK, Czosnyka Z et al. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 2004; 127 (Pt 5): 965–972. doi: 10.1093/brain/awh131.

122. Peterson KA, Mole TB, Keong NCH et al. Structural correlates of cognitive impairment in normal pressure hydrocephalus. Acta Neurol Scand 2019; 139 (3): 305–312. doi: 10.1111/ane.13052.

123. Vlasák A, Skalický P, Mládek A et al. Structural volumetry in NPH dia­gnostics and treatment-future or dead end? Neurosurg Rev 2021; 44 (1): 503–514. doi: 10.1007/s10143-020-01245-y.

124. Garcia-Armengol R, Domenech S, Botella-Campos C et al. Comparison of elevated intracranial pressure pulse amplitude and disproportionately enlarged subarachnoid space (DESH) for prediction of surgical results in suspected idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2016; 158 (11): 2207–2213. doi: 10.1007/s00701-016-2858-5.

125. Virhammar J, Laurell K, Cesarini KG et al. The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. J Neurosurg 2014; 120 (1): 178–184. doi: 10.3171/2013.8.JNS13575.

126. Yamada S, Ishikawa M, Yamamoto K. Optimal dia­gnostic indices for idiopathic normal pressure hydrocephalus based on the 3D quantitative volumetric analysis for the cerebral ventricle and subarachnoid space. AJNR Am J Neuroradiol 2015; 36 (12): 2262–2269. doi: 10.3174/ajnr.A4440.

127. Ishikawa M, Oowaki H, Takezawa M et al. Disproportionately enlarged subarachnoid space hydrocephalus in idiopathic normal-pressure hydrocephalus and its implication in pathogenesis. Acta Neurochir Suppl 2016; 122: 287–290. doi: 10.1007/978-3-319-22533-3_57.

128. Kojoukhova M, Vanha K-I, Timonen M et al. Associations of intracranial pressure with brain bio­psy, radiological findings, and shunt surgery outcome in patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2017; 159 (1): 51–61. doi: 10.1007/s00701-016-3025-8.

129. Kojoukhova M, Koivisto AM, Korhonen R et al. Feasibility of radiological markers in idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2015; 157 (10): 1709–1718. doi: 10.1007/s00701-015-2503-8.

130. Cogswell PM, Graff-Radford J, Wurtz LI et al. CSF dynamics disorders: association of brain MRI and nuclear medicine cisternogram findings. Neuroimage Clin 2020; 28: 102481. doi: 10.1016/j.nicl.2020.102481.

131. Craven CL, Toma AK, Mostafa T et al. The predictive value of DESH for shunt responsiveness in idiopathic normal pressure hydrocephalus. J Clin Neurosci 2016; 34: 294–298. doi: 10.1016/j.jocn.2016.09.004.

132. Iseki C, Kawanami T, Nagasawa H et al. Asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM) in the elderly: a prospective study in a Japanese population. J Neurol Sci 2009; 277 (1–2): 54–57. doi: 10.1016/j.jns.2008.10.004.

133. Virhammar J, Ahlgren A, Cesarini KG et al. Cerebral perfusion does not increase after shunt surgery for normal pressure hydrocephalus. J Neuroimaging 2020; 30 (3): 303–307. doi: 10.1111/jon.12702.

134. Solamen LM, McGarry MDJ, Fried J et al. Poroelastic mechanical properties of the brain tissue of normal pressure hydrocephalus patients during lumbar drain treatment using intrinsic actuation MR elastography. Acad Radiol 2021; 28 (4): 457–466. doi: 10.1016/j.acra.2020.03.009.

135. Murphy MC, Cogswell PM, Trzasko JD et al. Identification of normal pressure hydrocephalus by disease-specific patterns of brain stiffness and damping ratio. Invest Radiol 2020; 55 (4): 200–208. doi: 10.1097/RLI.0000000000000630.

136. Perry A, Graffeo CS, Fattahi N et al. Clinical correlation of abnormal findings on magnetic resonance Eelastography in idiopathic normal pressure hydrocephalus. World Neurosurg 2017; 99: 695–700.e1. doi: 10.1016/j.wneu.2016.12.121.

137. Algin O, Hakyemez B, Parlak M. The efficiency of PC-MRI in dia­gnosis of normal pressure hydrocephalus and prediction of shunt response. Acad Radiol 2010; 17 (2): 181–187. doi: 10.1016/j.acra.2009.08.011.

138. Sharma AK, Gaikwad S, Gupta V et al. Measurement of peak CSF flow velocity at cerebral aqueduct, before and after lumbar CSF drainage, by use of phase-contrast MRI: utility in the management of idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 2008; 110 (4): 363–368. doi: 10.1016/j.clineuro.2007.12.021.

139. Hattingen E, Jurcoane A, Melber J et al. Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery 2010; 66 (5): 917–924. doi: 10.1227/01.NEU.0000367801.35654.EC.

140. Lenfeldt N, Larsson A, Nyberg L et al. Diffusion tensor imaging reveals supplementary lesions to frontal white matter in idiopathic normal pressure hydrocephalus. Neurosurgery 2011; 68 (6): 1586–1593. doi: 10.1227/NEU.0b013e31820f3401.

141. Kim MJ, Seo SW, Lee KM et al. Differential dia­gnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol 2011; 32 (8): 1496–1503. doi: 10.3174/ajnr.A2531.

142. Siasios I, Kapsalaki EZ, Fountas KN et al. The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review. Neurosurg Focus 2016; 41 (3): E12. doi: 10.3171/2016.6.FOCUS16192.

143. Jurcoane A, Keil F, Szelenyi A et al. Directional diffusion of corticospinal tract supports therapy decisions in idiopathic normal-pressure hydrocephalus. Neuroradiology 2014; 56 (1): 5–13. doi: 10.1007/s00234-013- 1289-8.

144. Nakanishi A, Fukunaga I, Hori M et al. Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging. Neuroradiology 2013; 55 (8): 971–976. doi: 10.1007/s00234-013-1201-6.

145. Hori M, Kamiya K, Nakanishi A et al. Prospective estimation of mean axon diameter and extra-axonal space of the posterior limb of the internal capsule in patients with idiopathic normal pressure hydrocephalus before and after a lumboperitoneal shunt by using q-space diffusion MRI. Eur Radiol 2016; 26 (9): 2992–2998. doi: 10.1007/s00330-015-4162-9.

146. Kamiya K, Kamagata K, Miyajima M et al. Diffusional kurtosis imaging in idiopathic normal pressure hydrocephalus: correlation with severity of cognitive impairment. Magn Reson Med Sci 2016; 15 (3): 316–323. doi: 10.2463/mrms.mp.2015-0093.

147. Irie R, Tsuruta K, Hori M et al. Neurite orientation dispersion and density imaging for evaluation of corticospinal tract in idiopathic normal pressure hydrocephalus. Jpn J Radiol 2017; 35 (1): 25-30. doi: 10.1007/s11604-016-0594-7.

148. Lenfeldt N, Hauksson J, Birgander R et al. Improvement after cerebrospinal fluid drainage is related to levels of N-acetyl-aspartate in idiopathic normal pressure hydrocephalus. Neurosurgery 2008; 62 (1): 135–141. doi: 10.1227/01.NEU.0000311070.25992.05.

149. Savolainen S, Laakso MP, Paljärvi L et al. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer‘s disease confirmed by pathologic analysis. Am J Neuroradiol 2000; 21 (2): 409–414.

150. Aoki Y, Kazui H, Bruña R et al. Normalized power variance of eLORETA at high-convexity area predicts shunt response in idiopathic normal pressure hydrocephalus. Sci Rep 2020; 10 (1): 13054. doi: 10.1038/s41598-020-70035-9.

151. Del Gamba C, Bruno A, Frosini D et al. Is DAT imaging abnormality in normal pressure hydrocephalus always suggestive of degeneration? Neurol Sci 2021; 42 (2): 723–726. doi: 10.1007/s10072-020-04743-5.

152. Chang C-C, Asada H, Mimura T et al. A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. J Neurosurg 2009; 111 (3): 610–617. doi: 10.3171/2008.10.17676.

153. Hiraoka K, Narita W, Kikuchi H et al. Amyloid deposits and response to shunt surgery in idiopathic normal-pressure hydrocephalus. J Neurol Sci 2015; 356 (1–2): 124–128. doi: 10.1016/j.jns.2015.06.029.

154. Leinonen V, Rinne JO, Wong DF et al. Dia­gnostic effectiveness of quantitative [18F]flutemetamol PET imaging for detection of fibrillar amyloid b using cortical bio­psy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus. Acta Neuropathol Commun 2014; 2 (1): 46. doi: 10.1186/2051-5960-2-46.

155. Norager NH, Olsen MH, Pedersen SH et al. Reference values for intracranial pressure and lumbar cerebrospinal fluid pressure: a systematic review. Fluids Barriers CNS 2021; 18 (1): 19. doi: 10.1186/s12987-021-00253-4.

156. Marmarou A, Bergsneider M, Klinge P et al. The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 2005; 57 (3 Suppl): S17–28. doi: 10.1227/01.neu.0000168184.01002.60.

157. Hebb AO, Cusimano MD. Idiopathic normal pressure hydrocephalus: a systematic review of dia­gnosis and outcome. Neurosurgery 2001; 49 (5): 1166–1186. doi: 10.1097/00006123-200111000-00028.

158. Kahlon B, Sundbärg G, Rehncrona S. Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatr 2002; 73 (6): 721–726. doi: 10.1136/jnnp.73.6.721.

159. Brean A, Eide PK. Assessment of idiopathic normal pressure patients in neurological practice: the role of lumbar infusion testing for referral of patients to neurosurgery. Eur J Neurol 2008; 15 (6): 605–612. doi: 10.1111/j.1468-1331.2008.02134.x.

160. Meier U, Bartels P. The importance of the intrathecal infusion test in the dia­gnostic of normal-pressure hydrocephalus. Eur Neurology 2001; 46 (4): 178–186. doi: 10.1159/000050801.

161. Børgesen SE, Gjerris F. Relationships between intracranial pressure, ventricular size, and resistance to CSF outflow. J Neurosurg 1987; 67 (4): 535–539. doi: 10.3171/jns.1987.67.4.0535.

162. Kim D-J, Kim H, Kim Y-T et al. Thresholds of resistance to CSF outflow in predicting shunt responsiveness. Neurol Res 2015; 37 (4): 332–340. doi: 10.1179/1743132814Y.0000000454.

163. Albeck MJ, Børgesen SE, Gjerris F et al. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg 1991; 74 (4): 597–600. doi: 10.3171/jns.1991.74.4.0597.

164. Lalou AD, Czosnyka M, Placek MM et al. CSF dynamics for shunt prognostication and revision in normal pressure hydrocephalus. J Clin Med 2021; 10 (8): 1711. doi: 10.3390/jcm10081711.

165. Halperin JJ, Kurlan R, Schwalb JM et al. Practice guideline: idiopathic normal pressure hydrocephalus: response to shunting and predictors of response: report of the guideline development, issemination, and implementation subcommittee of the American Academy of Neurology. Neurology 2015; 85 (23): 2063–2071. doi: 10.1212/WNL.0000000000002193.

166. Nelson JR, Goodman SJ. An evaluation of the cerebrospinal fluid infusion test for hydrocephalus. Neurology 1971; 21 (10): 1037–1053. doi: 10.1212/wnl.21.10.1037.

167. Kahlon B, Sundbärg G, Rehncrona S. Lumbar infusion test in normal pressure hydrocephalus. Acta Neurol Scand 2005; 111 (6): 379–384. doi: 10.1111/j.1600-0404. 2005.00417.x

168. Wikkelsö C, Andersson H, Blomstrand C et al. Predictive value of the cerebrospinal fluid tap-test. Acta Neurol Scand 1986; 73 (6): 566–573. doi: 10.1111/j.1600-0404. 1986.tb04601.x.

169. Wikkelsø C, Hellström P, Klinge PM et al. The European iNPH multicentre study on the predictive values of resistance to CSF outflow and the CSF tap test in patients with idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 2013; 84 (5): 562–568. doi: 10.1136/jnnp-2012-303314.

170. Gallagher R, Marquez J, Osmotherly P. Gait and balance measures can identify change from a cerebrospinal fluid tap test in idiopathic normal pressure hydrocephalus. Arch Phys Med Rehabil 2018; 99 (11): 2244–2250. doi: 10.1016/j.apmr.2018.03.018.

171. Bovonsunthonchai S, Witthiwej T, Ngamsombat C et al. Effect of spinal tap test on the performance of sit-to-stand, walking, and turning in patients with idiopathic normal pressure hydrocephalus. Nagoya J Med Sci 2018; 80 (1): 53–60. doi: 10.18999/nagjms.80.1.53.

172. Gallagher RM, Marquez J, Osmotherly P. Cognitive and upper limb symptom changes from a tap test in idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 2018; 174: 92–96. doi: 10.1016/j.clineuro.2018.09.015.

173. Agrawal A, Bhattacharya A, Kamble N et al. Effect of lumbar drainage on cortical excitability in normal pressure hydrocephalus. Can J Neurol Sci 2021; 48 (2): 253–258. doi: 10.1017/cjn.2020.169.

174. Governale LS, Fein N, Logsdon J et al. Techniques and complications of external lumbar drainage for normal pressure hydrocephalus. Neurosurgery 2008; 63 (4 Suppl): 379–384. doi: 10.1227/01.NEU.0000327023.18220.88.

175. Mahr CV, Dengl M, Nestler U et al. Idiopathic normal pressure hydrocephalus: dia­gnostic and predictive value of clinical testing, lumbar drainage, and CSF dynamics. J Neurosurg 2016; 125 (3): 591–597. doi: 10.3171/2015.8.JNS151112.

176. Czosnyka Z, Czosnyka M. Long-term monitoring of intracranial pressure in normal pressure hydrocephalus and other CSF disorders. Acta Neurochir (Wien) 2017; 159 (10): 1979–1980. doi: 10.1007/s00701-017-3282-1.

177. Chotai S, Medel R, Herial NA et al. External lumbar drain: a pragmatic test for prediction of shunt outcomes in idiopathic normal pressure hydrocephalus. Surg Neurol Int 2014; 5 (1): 12. doi: 10.4103/2152-7806.125860.

178. Gallina P, Lastrucci G, Caini S et al. Accuracy and safety of 1-day external lumbar drainage of CSF for shunt selection in patients with idiopathic normal pressure hydrocephalus. J Neurosurg 2018; 1–7. doi: 10.3171/2018.6.JNS18400.

179. Schniepp R, Trabold R, Romagna A et al. Walking assessment after lumbar puncture in normal-pressure hydrocephalus: a delayed improvement over 3 days. J Neurosurg 2017; 126 (1): 148–157. doi: 10.3171/2015.12.JNS151663.

180. Raftopoulos C, Deleval J, Chaskis C et al. Cognitive recovery in idiopathic normal pressure hydrocephalus: a prospective study. Neurosurgery 1994; 35 (3): 397–404. doi: 10.1227/00006123-199409000-00006.

181. Weerakkody RA, Czosnyka M, Schuhmann MU et al. Clinical assessment of cerebrospinal fluid dynamics in hydrocephalus. Guide to interpretation based on observational study. Acta Neurol Scand 2011; 124 (2): 85–98. doi: 10.1111/j.1600-0404.2010.01467.x.

182. Pisani R, Mazzone P, Cocito L. Continuous lumbar cerebrospinal fluid pressure monitoring in idiopathic normal-pressure hydrocephalus: predictive value in the selection for shunt surgery. Clin Neurol Neurosurg 1998; 100 (2): 160–162. doi: 10.1016/s0303-8467 (98) 00008-0.

183. Eide PK, Sorteberg W. Dia­gnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of 214 patients. Neurosurgery 2010; 66 (1): 80–90. doi: 10.1227/01.NEU.0000363408.69856.B8.

184. Poca MA, Mataró M, Matarín MDM et al. Is the placement of shunts in patients with idiopathic normal pressure hydrocephalus worth the risk? Results of a study based on continuous monitoring of intracranial pressure. J Neurosurg 2004; 100 (5): 855–866. doi: 10.3171/jns.2004.100.5.0855.

185. Green LM, Wallis T, Schuhmann MU et al. Intracranial pressure waveform characteristics in idiopathic normal pressure hydrocephalus and late-onset idiopathic aqueductal stenosis. Fluids Barriers CNS 2021; 18 (1): 25. doi: 10.1186/s12987-021-00259-y.

186. Sahuquillo J, Rubio­ E, Codina A et al. Reappraisal of the intracranial pressure and cerebrospinal fluid dynamics in patients with the so-called „normal pressure hydrocephalus“ syndrome. Acta Neurochir 1991; 112 (1–2): 50–61. doi: 10.1007/BF01402454.

187. Speil A, Sosa JC, Will BE et al. Lack of correlation of overnight monitoring data and lumbar infusion data in iNPH patients. Acta Neurochir Suppl 2012; 114: 213–216. doi: 10.1007/978-3-7091-0956-4_41.

188. Graff-Radford NR. Alzheimer CSF bio­markers may be misleading in normal-pressure hydrocephalus. Neurology 2014; 83 (17): 1573–1575. doi: 10.1212/WNL.000 0000000000916.

189. Jeppsson A, Zetterberg H, Blennow K et al. Idiopathic normal-pressure hydrocephalus: pathophysiology and dia­gnosis by CSF bio­markers. Neurology 2013; 80 (15): 1385–1392. doi: 10.1212/WNL.0b013e31828c2fda.

190. Li X, Miyajima M, Mineki R et al. Analysis of potential dia­gnostic bio­markers in cerebrospinal fluid of idiopathic normal pressure hydrocephalus by proteomics. Acta Neurochir (Wien) 2006; 148 (8): 859–864. doi: 10.1007/s00701-006-0787-4.

191. Schirinzi T, Sancesario GM, Lazzaro GD et al. Cerebrospinal fluid bio­markers profile of idiopathic normal pressure hydrocephalus. J Neural Transm (Vienna) 2018; 125 (4): 673–679. doi: 10.1007/s00702-018-1842-z.

192. Schirinzi T, Sancesario GM, Ialongo C et al. A clinical and bio­chemical analysis in the differential dia­gnosis of idiopathic normal pressure hydrocephalus. Front Neurol 2015; 6: 86. doi: 10.3389/fneur.2015.00086.

193. Sosvorova L, Hill M, Mohapl M et al. Steroid hormones in prediction of normal pressure hydrocephalus. J Steroid Biochem Mol Biol 2015; 152: 124–132. doi: 10.1016/j.jsbmb.2015.05.004.

194. Sosvorová L, Bičíková M, Mohapl M et al. Steroids and their metabolites in CSF from shunt as potential predictors of further disease progression in patients with hydrocephalus and the importance of 11b-hydroxysteroid dehydrogenase. Horm Mol Biol Clin Investig 2012; 10 (3): 287–292. doi: 10.1515/hmbci-2012-0002.

195. Chen Z, Liu C, Zhang J et al. Cerebrospinal fluid Ab42, t-tau, and p-tau levels in the differential dia­gnosis of idiopathic normal-pressure hydrocephalus: a systematic review and meta-analysis. Fluids Barriers CNS 2017; 14 (1): 13. doi: 10.1186/s12987-017-0062-5.

196. Jeppsson A, Wikkelsö C, Blennow K et al. CSF bio­markers distinguish idiopathic normal pressure hydrocephalus from its mimics. J Neurol Neurosurg Psychiatr 2019; 90 (10): 1117–1123. doi: 10.1136/jnnp-2019-320826.

197. Manniche C, Hejl A-M, Hasselbalch SG et al. Cerebrospinal fluid bio­markers in idiopathic normal pressure hydrocephalus versus Alzheimer‘s disease and subcortical ischemic vascular disease: a systematic review. J Alzheimers Dis 2019; 68 (1): 267–279. doi: 10.3233/JAD-180816.

198. Pfanner T, Henri-Bhargava A, Borchert S. Cerebrospinal fluid bio­markers as predictors of shunt response in idiopathic normal pressure hydrocephalus: a systematic review. Can J Neurol Sci 2018; 45 (1): 3–10. doi: 10.1017/cjn.2017.251.

199. Rigamonti D. Adult hydrocephalus. Cambridge: Cambridge University Press 2014.

200. Malm J, Graff-Radford NR, Ishikawa M et al. Influence of comorbidities in idiopathic normal pressure hydrocephalus – research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids Barriers CNS 2013; 10 (1): 22. doi: 10.1186/2045-8118-10-22.

201. Bech-Azeddine R, Høgh P, Juhler M et al. Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral bio­psy findings and outcome of cerebrospinal fluid shunting. J Neurol Neurosurg Psychiatry 2007; 78 (2): 157–161. doi: 10.1136/jnnp.2006.095117.

202. Pomeraniec IJ, Bond AE, Lopes MB et al. Concurrent Alzheimer’s pathology in patients with clinical normal pressure hydrocephalus: correlation of high-volume lumbar puncture results, cortical brain bio­psies, and outcomes. J Neurosurg 2016; 124 (2): 382–388. doi: 10.3171/2015.2.JNS142318.

203. Luikku AJ, Hall A, Nerg O et al. Predicting development of Alzheimer‘s disease in patients with shunted idiopathic normal pressure hydrocephalus. J Alzheimers Dis 2019; 71 (4): 1233–1243. doi: 10.3233/JAD-190334.

204. Leinonen V, Koivisto AM, Alafuzoff I et al. Cortical brain bio­psy in long-term prognostication of 468 patients with possible normal pressure hydrocephalus. Neurodegener Dis 2012; 10 (1–4): 166–169. doi: 10.1159/000335155.

205. Silverberg GD, Mayo M, Saul T et al. Alzheimer‘s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2003; 2 (8): 506–511. doi: 10.1016/s1474-4422 (03) 00487-3.

206. Huovinen J, Helisalmi S, Paananen J et al. Alzheimer‘s disease-related polymorphisms in shunt-responsive idiopathic normal pressure hydrocephalus. J Alzheimers Dis 2017; 60 (3): 1077–1085. doi: 10.3233/JAD-170 583.

207. Nakajima M, Kuriyama N, Miyajima M et al. Background risk factors associated with shunt intervention for possible idiopathic normal pressure hydrocephalus: a nationwide hospital-based survey in Japan. J Alzheimers Dis 2019; 68 (2): 735–744. doi: 10.3233/JAD-180955.

208. Wilson RK, Williams MA. The role of the neurologist in the longitudinal management of normal pressure hydrocephalus. Neurologist 2010; 16 (4): 238–248. doi: 10.1097/NRL.0b013e3181de4907.

209. Kazui H, Miyajima M, Mori E et al. Lumboperitoneal shunt surgery for idiopathic normal pressure hydrocephalus (SINPHONI-2): an open-label randomised trial. Lancet Neurol 2015; 14 (6): 585–594. doi: 10.1016/S1474-4422 (15) 00046-0.

210. Ishikawa M, Oowaki H, Takezawa M et al. Disproportionately enlarged subarachnoid space hydrocephalus in idiopathic normal-pressure hydrocephalus and its implication in pathogenesis. Acta Neurochir Suppl 2016; 122: 287–290. doi: 10.1007/978-3-319-22533-3_57.

211. Kehler U, Kiefer M, Eymann R et al. PROSAIKA: a prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting. Clin Neurol Neurosurg 2015; 137: 132–136. doi: 10.1016/j.clineuro.2015.07.002.

212. Lemcke J, Meier U, Müller C et al. Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomised, open label, multicentre trial (SVASONA). J Neurol Neurosurg Psychiatry 2013; 84 (8): 850–857. doi: 10.1136/jnnp-2012-303936.

213. Krahulik D, Vaverka M, Hrabalek L et al. Ventriculoperitoneal shunt in treating of idiopathic normal pressure hydrocephalus-single-center study. Acta Neurochir 2020; 162 (1): 1–7. doi: 10.1007/s00701-019-04135-5.

214. Kondziella D, Sonnewald U, Tullberg M et al. Brain metabolism in adult chronic hydrocephalus. J Neurochem 2008; 106 (4): 1515–1524. doi: 10.1111/j.1471-4159.2008.05422.x.

215. Tullberg M, Persson J, Petersen J et al. Shunt surgery in idiopathic normal pressure hydrocephalus is cost-effective – a cost utility analysis. Acta Neurochir 2018; 160 (3): 509–518. doi: 10.1007/s00701-017-3394-7.

216. Bergsneider M, Black PM, Klinge P et al. Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery 2005; 57 (3 Suppl): S29–39. doi: 10.1227/01.NEU.0000168186.45363.4D.

217. Williams MA, Malm J. Dia­gnosis and treatment of idiopathic normal pressure hydrocephalus. Continuum (Minneap Minn) 2016; 22 (2 Dementia): 579–599. doi: 10.1212/CON.0000000000000305.

218. Kiefer M, Unterberg A. The differential dia­gnosis and treatment of normal-pressure hydrocephalus. Dtsch Arztebl Int 2012; 109 (1–2): 15–25. doi: 10.3238/arztebl.2012.0015.

219. Feletti A, d‘Avella D, Wikkelsø C et al. Ventriculoperitoneal shunt complications in the European idiopathic normal pressure hydrocephalus multicenter study. Oper Neurosurg 2019; 17 (1): 97–102. doi: 10.1093/ons/opy232.

220. Schenker P, Stieglitz LH, Sick B et al. Patients with a normal pressure hydrocephalus shunt have fewer complications than do patients with other shunts. World Neurosurg 2018; 110: e249–e257. doi: 10.1016/j.wneu.2017.10.151.

221. McGirt MJ, Woodworth G, Coon AL et al. Dia­gnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery 2005; 57 (4): 699–705. doi: 10.1093/neurosurgery/57.4.699.

222. Vernet O, Rilliet B. Late complications of ventriculoatrial or ventriculoperitoneal shunts. Lancet 2001; 358 (9293): 1569–1570. doi: 10.1016/s0140-6736 (01) 06 670-3.

223. Hung AL, Vivas-Buitrago T, Adam A et al. Ventriculoatrial versus ventriculoperitoneal shunt complications in idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 2017; 157: 1–6. doi: 10.1016/j.clineuro.2017.03.014.

224. McGovern RA, Kelly KM, Chan AK et al. Should ventriculoatrial shunting be the procedure of choice for normal-pressure hydrocephalus? J Neurosurg 2014; 120 (6): 1458–1464. doi: 10.3171/2014.1.JNS131808.

225. Liu A, Sankey EW, Jusué-Torres I et al. Clinical outcomes after ventriculoatrial shunting for idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 2016; 143: 34–38. doi: 10.1016/j.clineuro.2016.02.013.

226. Chung JJ, Yu J-S, Kim JH et al. Intraabdominal complications secondary to ventriculoperitoneal shunts: CT findings and review of the literature. AJR Am J Roentgenol 2009; 193 (5): 1311–1317. doi: 10.2214/AJR.09.2463.

227. Nakajima M, Miyajima M, Ogino I et al. Use of external lumbar cerebrospinal fluid drainage and lumboperitoneal shunts with strata NSC valves in idiopathic normal pressure hydrocephalus: a single-center experience. World Neurosurg 2015; 83 (3): 387–393. doi: 10.1016/j.wneu.2014.08.004.

228. Kanazawa R, Ishihara S, Sato S et al. Familiarization with lumboperitoneal shunt using some technical resources. World Neurosurg 2011; 76 (3–4): 347–351. doi: 10.1016/j.wneu.2011.02.024.

229. Miyajima M, Kazui H, Mori E et al. One-year outcome in patients with idiopathic normal-pressure hydrocephalus: comparison of lumboperitoneal shunt to ventriculoperitoneal shunt. J Neurosurg 2016; 125 (6): 1483–1492. doi: 10.3171/2015.10.Jns151894.

230. Bayar MA, Tekiner A, Celik H et al. Efficacy of lumboperitoneal shunting in patients with normal pressure hydrocephalus. Turk Neurosurg 2018; 28 (1): 62–66. doi: 10.5137/1019-5149.JTN.18702-16.1.

231. Bloch O, McDermott MW. Lumboperitoneal shunts for the treatment of normal pressure hydrocephalus. J Clin Neurosci 2012; 19 (8): 1107–1111. doi: 10.1016/j.jocn.2011.11.019.

232. Nakajima M, Miyajima M, Ogino I et al. Shunt intervention for possible idiopathic normal pressure hydrocephalus improves patient outcomes: a nationwide hospital-based survey in Japan. Front Neurol 2018; 9: 421. doi: 10.3389/fneur.2018.00421.

233. Wang VY, Barbaro NM, Lawton MT et al. Complications of lumboperitoneal shunts. Neurosurgery 2007; 60 (6): 1045–1048. doi: 10.1227/01.NEU.0000255469.68129.81.

234. Yang T-H, Chang C-S, Sung W-W et al. Lumboperitoneal shunt: a new modified surgical technique and a comparison of the complications with ventriculoperitoneal shunt in a single center. Medicina (Kaunas) 2019; 55 (10): 643. doi: 10.3390/medicina55100643.

235. Gangemi M, Maiuri F, Naddeo M et al. Endoscopic third ventriculostomy in idiopathic normal pressure hydrocephalus: an Italian multicenter study. Neurosurgery 2008; 63 (1): 62–67. doi: 10.1227/01.NEU.0000335071.37943.40.

236. Tudor IK, Tudor M, McCleery J et al. Endoscopic third ventriculostomy (ETV) for idiopathic normal pressure hydrocephalus (iNPH). Cochrane Database Syst Rev 2015; 7: CD010033. doi: 10.1002/14651858.CD010033.pub2.

237. Tasiou A, Brotis AG, Esposito F et al. Endoscopic third ventriculostomy in the treatment of idiopathic normal pressure hydrocephalus: a review study. Neurosurg Rev 2016; 39 (4): 557–563. doi: 10.1007/s10143-015-0685-4.

238. Craven C, Asif H, Farrukh A et al. Case series of ventriculopleural shunts in adults: a single-center experience. J Neurosurg 2017; 126 (6): 2010–2016. doi: 10.3171/2016.4.JNS16641.

239. Elder BD, Sankey EW, Goodwin CR et al. Outcomes and experience with lumbopleural shunts in the management of idiopathic intracranial hypertension. World Neurosurg 2015; 84 (2): 314–319. doi: 10.1016/j.wneu.2015.03.021.

240. Woo PYM, Pang PKH, Chan KY et al. Ventriculosternal shunting for the management of hydrocephalus: case report of a novel technique. Neurosurgery 2015; 11 (3 Suppl): 371–375. doi: 10.1227/NEU.0000000000000861.

241. Grigorean VT, Sandu AM, Popescu M et al. Our initial experience with ventriculo-epiplooic shunt in treatment of hydrocephalus in two centers. Neurol Neurochir Pol 2017; 51 (4): 290–298. doi: 10.1016/j.pjnns.2017.04.007.

242. Miyake H. Shunt devices for the treatment of adult hydrocephalus: recent progress and characteristics. Neurol Med Chir (Tokyo) 2016; 56 (5): 274–283. doi: 10.2176/nmc.ra.2015-0282.

243. Furlanetti LL, Ballestero MFM, de Oliveira RS. Shunt technology in pediatric neurosurgery: current options and scientific evidence. Arch Pediatr Neurosurg 2020; 2 (2): e342020. doi: 10.46900/apn.v2i2 (May-August).34.

244. Czosnyka Z, Czosnyka M, Richards HK et al. Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 1998; 42 (2): 327–333. doi: 10.1097/00006123-199802000-00069.

245. Ziebell M, Wetterslev J, Tisell M et al. Flow-regulated versus differential pressure-regulated shunt valves for adult patients with normal pressure hydrocephalus. Cochrane Database Syst Rev 2013; 5: CD009706. doi: 10.1002/14651858.CD009706.pub2.

246. Scholz R, Lemcke J, Meier U et al. Efficacy and safety of programmable compared with fixed anti-siphon devices for treating idiopathic normal-pressure hydrocephalus (iNPH) in adults – SYGRAVA: study protocol for a randomized trial. Trials 2018; 19 (1): 566. doi: 10.1186/s13063-018-2951-6.

247. Scheffler P, Oertel MF, Stieglitz LH. Comparison between flow-regulated and gravitational shunt valves in the treatment of normal pressure hydrocephalus: flow-grav study. Neurosurgery 2021; 89 (3): 413–419. doi: 10.1093/neuros/nyab176.

248. Lemcke J, Meier U. Clinical course of disease of patients with normal pressure hydrocephalus: three years after shunt surgery. Aktuelle Neurol 2005; 32 (7): 394–401. doi: 10.1055/s-2005-866882.

249. Toma AK, Papadopoulos MC, Stapleton S et al. Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir (Wien) 2013; 155 (10): 1977–1980. doi: 10.1007/s00701-013-1835-5.

250. Klinge P, Marmarou A, Bergsneider M et al. Outcome of shunting in idiopathic normal-pressure hydrocephalus and the value of outcome assessment in shunted patients. Neurosurgery 2005; 57 (3 Suppl): S40–52. doi: 10.1227/01.NEU.0000168187.01077.2F.

251. Poca MA, Mataró M, Matarín M et al. Good outcome in patients with normal-pressure hydrocephalus and factors indicating poor prognosis. J Neurosurg 2005; 103 (3): 455–463. doi: 10.3171/jns.2005.103.3.0455.

252. Shaw R, Everingham E, Mahant N et al. Clinical outcomes in the surgical treatment of idiopathic normal pressure hydrocephalus. J Clin Neurosci 2016; 29: 81–86. doi: 10.1016/j.jocn.2015.10.044.

253. Esmonde T, Cooke S. Shunting for normal pressure hydrocephalus (NPH). Cochrane Database Syst Rev 2002; 3: CD003157. doi: 10.1002/14651858.CD003157.

254. Kameda M, Yamada S, Atsuchi M et al. Cost-effectiveness analysis of shunt surgery for idiopathic normal pressure hydrocephalus based on the SINPHONI and SINPHONI-2 trials. Acta Neurochir (Wien) 2017; 159 (6): 995–1003. doi: 10.1007/s00701-017-3115-2.

255. Klinge P, Hellström P, Tans J et al. One-year outcome in the European multicentre study on iNPH. Acta Neurol Scand 2012; 126 (3): 145–153. doi: 10.1111/j.1600-04 04.2012.01676.x.

256. Poca MA, Solana E, Martínez-Ricarte FR et al. Idiopathic normal pressure hydrocephalus: results of a prospective cohort of 236 shunted patients. Acta Neurochir Suppl 2012; 114: 247–253. doi: 10.1007/978-3-7091-0956-4_49.

257. Peterson KA, Savulich G, Jackson D et al. The effect of shunt surgery on neuropsychological performance in normal pressure hydrocephalus: a systematic review and meta-analysis. J Neurol 2016; 263 (8): 1669–1677. doi: 10.1007/s00415-016-8097-0.

258. Thomas G, McGirt MJ, Woodworth G et al. Baseline neuropsychological profile and cognitive response to cerebrospinal fluid shunting for idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 2005; 20 (2–3): 163–168. doi: 10.1159/000087092.

259. Gölz L, Ruppert F-H, Meier U et al. Outcome of modern shunt therapy in patients with idiopathic normal pressure hydrocephalus 6 years postoperatively. J Neurosurg 2014; 121 (4): 771–775. doi: 10.3171/2014.6.JNS131211.

260. Bozhkov Y, Roessler K, Hore N et al. Neurological outcome and frequency of overdrainage in normal pressure hydrocephalus directly correlates with implanted ventriculo-peritoneal shunt valve type. Neurol Res 2017; 39 (7): 601–605. doi: 10.1080/01616412.2017.1321300.

261. Kharkar S, Shuck J, Kapoor S et al. Radionuclide shunt patency study for evaluation of suspected ventriculoperitoneal shunt malfunction in adults with normal pressure hydrocephalus. Neurosurgery 2009; 64 (5): 909–916. doi: 10.1227/01.NEU.0000343545.93153.EB.

262. Portnoy HD, Schulte RR, Fox JL et al. Anti-siphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J Neurosurg 1973; 38 (6): 729–738. doi: 10.3171/jns.1973.38.6.0729.

263. Loman J. Effects of alterations in posture on the cerebrospinal fluid pressure. AMA Arch Neurol Psychiatry 1935; 33 (6): 1279. doi: 10.1001/archneurpsyc.1935.02250180138007.

264. Poca MA, Sahuquillo J, Topczewski T et al. Posture-induced changes in intracranial pressure: a comparative study in patients with and without a cerebrospinal fluid block at the craniovertebral junction. Neurosurgery 2006; 58 (5): 899–906. doi: 10.1227/01.NEU.0000209915.16235.6D.

265. Delwel EJ, de Jong DA, Dammers R et al. A randomised trial of high and low pressure level settings on an adjustable ventriculoperitoneal shunt valve for idiopathic normal pressure hydrocephalus: results of the Dutch evaluation programme Strata shunt (DEPSS) trial. J Neurol Neurosurg Psychiatry 2013; 84 (7): 813–817. doi: 10.1136/jnnp-2012-302935.

266. Serarslan Y, Yilmaz A, Cakir M et al. Use of programmable versus nonprogrammable shunts in the management of normal pressure hydrocephalus: a multicenter retrospective study with cost-benefit analysis in Turkey. Medicine 2017; 96 (39): e8185. doi: 10.1097/MD.0000000000008185.

267. Lalou A-D, Czosnyka M, Garnett MR et al. Shunt infusion studies: impact on patient outcome, including health economics. Acta Neurochir 2020; 162 (5): 1019–1031. doi: 10.1007/s00701-020-04212-0.

268. Sarmey N, Kshettry VR, Shriver MF et al. Evidence-based interventions to reduce shunt infections: a systematic review. Childs Nerv Syst 2015; 31 (4): 541–549. doi: 10.1007/s00381-015-2637-2.

269. Pattavilakom A, Xenos C, Bradfield O et al. Reduction in shunt infection using antibio­tic impregnated CSF shunt catheters: an Australian prospective study. J Clin Neurosci 2007; 14 (6): 526–531. doi: 10.1016/j.jocn.2006.11.003.

270. Farber SH, Parker SL, Adogwa O et al. Effect of antibio­tic-impregnated shunts on infection rate in adult hydrocephalus: a single institution’s experience. Neurosurgery 2011; 69 (3): 625–629. doi: 10.1227/NEU.0b013e31821bc435.

271. Webster J, Osborne S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst Rev 2015; 2: CD004985. doi: 10.1002/14651858.CD004985.pub5.

272. Goodwin CR, Kharkar S, Wang P et al. Evaluation and treatment of patients with suspected normal pressure hydrocephalus on long-term warfarin anticoagulation therapy. Neurosurgery 2007; 60 (3): 497–501. doi: 10.1227/01.NEU.0000255349.71700.E1.

273. Malm J, Kristensen B, Stegmayr B et al. Three-year survival and functional outcome of patients with idiopathic adult hydrocephalus syndrome. Neurology 2000; 55 (4): 576–578. doi: 10.1212/WNL.55.4.576.

274. Alperin N, Oliu CJ, Bagci AM et al. Low-dose acetazolamide reverses periventricular white matter hyperintensities in iNPH. Neurology 2014; 82 (15): 1347–1351. doi: 10.1212/WNL.0000000000000313.

275. Miyake H, Ohta T, Kajimoto Y et al. Diamox® challenge test to decide indications for cerebrospinal fluid shunting in normal pressure hydrocephalus. Acta Neurochir (Wien) 1999; 141 (11): 1187–1193. doi: 10.1007/s007010050417.

276. Del Bigio MR, Di Curzio DL. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 2015; 13 (1): 3. doi: 10.1186/s12987-016-0025-2.

277. Gerner ST, Kuramatsu JB, Abel H et al. Intraventricular fibrinolysis has no effects on shunt dependency and functional outcome in endovascular-treated aneurysmal SAH. Neurocrit Care 2014; 21 (3): 435–443. doi: 10.1007/s12028-014-9961-3.

278. Kramer AH, Jenne CN, Zygun DA et al. Intraventricular fibrinolysis with tissue plasminogen activator is associated with transient cerebrospinal fluid inflammation: a randomized controlled trial. J Cereb Blood  Flow Metab 2015; 35 (8): 1241–1248. doi: 10.1038/jcbfm. 2015.47.

279. Yeom KW, Lober RM, Alexander A et al. Hydrocephalus decreases arterial spin-labeled cerebral perfusion. Am J Neuroradiol 2014; 35 (7): 1433–1439. doi: 10.3174/ajnr.A3891.

280. Owler BK, Pickard JD. Normal pressure hydrocephalus and cerebral blood flow: a review. Acta Neurol Scand 2001; 104 (6): 325–342. doi: 10.1034/j.1600-0404.2001.00092.x.

281. Del Bigio MR. Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 2010; 16 (1): 16–22. doi: 10.1002/ddrr.94.

282. Park E-H, Dombrowski S, Luciano M et al. Alterations of pulsation absorber characteristics in experimental hydrocephalus. J Neurosurg Pediatr 2010; 6 (2): 159–170. doi: 10.3171/2010.5.PEDS09142.

283. Wagshul ME, Eide PK, Madsen JR. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 2011; 8 (1): 5. doi: 10.1186/2045-8118-8-5.

284. Hamlat A, Adn M, Sid-Ahmed S et al. Theoretical considerations on the pathophysiology of normal pressure hydrocephalus (NPH) and NPH-related dementia. Med Hypotheses 2006; 67 (1): 115–123. doi: 10.1016/j.mehy.2006.01.029.

285. Schmidt JF, Albeck M, Gjerris F. The effect of nimodipine on ICP and CBF in patients with normal-pressure hydrocephalus. Acta Neurochir 1990; 102 (1–2): 11–13. doi: 10.1007/BF01402178.

286. Keenan S, Mavaddat N, Iddon J et al. Effects of methylphenidate on cognition and apathy in normal pressure hydrocephalus: a case study and review. Br J Neurosurg 2005; 19 (1): 46–50. doi: 10.1080/02688690500080 893.

287. Sosvorova L, Mohapl M, Hill M et al. Steroid hormones and homocysteine in the outcome of patients with normal pressure hydrocephalus. Physiol Res 2015; 64 (Suppl 2): S227–S236. doi: 10.33549/physiolres.933072.

288. Bičíková M, Rípová D, Hill M et al. Plasma levels of 7-hydroxylated dehydroepiandrosterone (DHEA) metabolites and selected amino-thiols as discriminatory tools of Alzheimer‘s disease and vascular dementia. Clin Chem Lab Med 2004; 42 (5): 518–524. doi: 10.1515/CCLM.2004.088.

289. Sosvorova L, Mohapl M, Vcelak J et al. The impact of selected cytokines in the follow-up of normal pressure hydrocephalus. Physiol Res 2015; 64 (Suppl 2): S283–S290. doi: 10.33549/physiolres.933069.

290. Hořínek D, Štěpán-Buksakowska I, Szabó N et al. Difference in white matter microstructure in differential dia­gnosis of normal pressure hydrocephalus and Alzheimer‘s disease. Clin Neurol Neurosurg 2016; 140: 52–59. doi: 10.1016/j.clineuro.2015.11.010.

291. Tan K, Meiri A, Mowrey WB et al. Diffusion tensor imaging and ventricle volume quantification in patients with chronic shunt-treated hydrocephalus: a matched case-control study. J Neurosurg 2018; 129 (6): 1611–1622. doi: 10.3171/2017.6.JNS162784.

292. Chen H, Dou Q, Yu L et al. VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 2018; 170: 446–455. doi: 10.1016/j.neuroimage.2017.04.041.

293. Irie R, Otsuka Y, Hagiwara A et al. A novel deep learning approach with a 3D convolutional ladder network for differential dia­gnosis of idiopathic normal pressure hydrocephalus and Alzheimer‘s disease. Magn Reson Med Sci 2020; 19 (4): 351–358. doi: 10.2463/mrms.mp.2019-0106.

294. Antes S, Stadie A, Müller S et al. Intracranial pressure-guided shunt valve adjustments with the Miethke sensor reservoir. World Neurosurg 2018; 109: e642–e650. doi: 10.1016/j.wneu.2017.10.044.

295. Malm J. Improving research and care for patients with idiopathic NPH. Lancet Neurol 2015; 14 (6): 561–563. doi: 10.1016/s1474-4422 (15) 00055-1.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 6

2021 Issue 6

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#