Barriers of Nervous System under Physiological and Pathological Conditions


Authors: J. Piťha
Authors‘ workplace: Neurologické oddělení, Krajská zdravotní, a. s. – Nemocnice Teplice, o. z. ;  Neurologická klinika 1. LF UK a VFN v Praze
Published in: Cesk Slov Neurol N 2014; 77/110(5): 553-559
Category: Review Article
doi: 10.14735/amcsnn2014553

Overview

Central and peripheral nervous systems are separated from the bloodstream by barrier structures that prevent free migration of water-soluble molecules through the tight junctions of the choroid plexus endothelial and epithelial cells. These barriers also play a role in the influx of essential molecules and elimination of xenobiotics. In recent years, differences and common features of the various barrier systems are being explored. Their disorders play a key role in a number of nervous system diseases. The present paper describes the structure and function of barrier systems under physiological and pathological conditions.

Key words:
blood brain barrier – blood nerve barrier – endotelial cells – astrocytes – pericytes

The author declare he has no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for bio­medical papers.


Sources

1. Abbot NJ. Evidence for bulk fow of brain intestitial fluid: significance for physiology and pathology. Neurochem Int 2004; 45(4): 545– 552.

2. Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE,Searson PC. The blood‑brain barrier: an engineer­ing perspective. Front Neuroeng 2013; 6: 7. doi: 10.3389/ fneng.2013.00007.

3. Tilling T, Engelbertz C, Decker S, Korte D, Hüwel S, Galla HJ. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res 2002; 310(1): 19– 29.

4. Muoio V, Persson PB, Sendeski MM. The neurovascular unit –  concept review. Acta Physiol (Oxf) 2014; 210(4): 790– 798. doi: 10.1111/ apha.12250.

5. Williams K, Alvarez X, Lackner AA. Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 2001; 36(2): 156– 164.

6. Ganong WF. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 2000; 27(5– 6): 422– 427.

7. Engelhardt B. T cell migration into the central nervous system during health and disease: different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol 2010; 1: 79– 93.

8. Takeshita Y, Ransohoff RM. Inflammatory cell traf­ficking across the blood‑brain barrier: chemokine regulation and in vitro models. Immunol Rev 2012; 248(1): 228– 239. doi: 10.1111/ j.1600‑065X.2012.01127.x.

9. Joó F. Endothelial cells of the brain and other systems: some similarities and differences. Prog Neurobio­­l 1996; 48(3): 255– 273.

10. Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14(11): 1398– 1405. doi: 10.1038/ nn.2946.

11. Armulik A, Genové G, Mäe M, Nisancioglu MH,Wallgard E, Niaudet C et al. Pericytes regulate the blood‑brain barrier. Nature 2010; 468(7323): 557– 561. doi: 10.1038/ nature09522.

12. Zhang Y, Barres BA. Astrocyte heterogeneity: an underappreciated topic in neurobio­­logy. Curr Opin Neurobio­­l 2010; 20(5): 588– 594. doi: 10.1016/ j.conb.2010.06.005.

13. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature 2010; 468(7321): 232– 243. doi: 10.1038/ nature09613.

14. Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron 2011; 71(5): 782– 797. doi: 10.1016/ j.neuron.2011.08.009.

15. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte‑endothelial interactions at the blood‑brain barrier. Nat Rev Neurosci 2006; 7(1): 41– 53.

16. Badaut J, Fukuda AM, Jullienne A, Petry KG. Aquaporin and brain diseases. Biochim Biophys Acta 2014; 1840(5): 1554– 1565. doi: 10.1016/ j.bbagen.2013.10.032.

17. Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Döpp EA, Renardel de Lavalette C et al. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol 2001; 167(8): 4644– 4650.

18. Wilhelm M, Silver R, Silverman AJ. Central nervous system neurons acquire mast cell products via trans­granulation. Eur J Neurosci 2005; 22(9): 2238– 2248.

19. Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL. Role of microglia in the central nervous system’s immune response. Neurol Res 2005; 27(7): 685– 691.

20. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S et al. Occludin: novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123(6): 1777– 1788.

21. Wolburg H, Wolburg‑Buchholz K, Kraus J, Rascher‑Eggstein G, Liebner S, Hamm S et al. Localization of claudin‑3 in tight junctions of the blood‑brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 2003; 105(6): 586– 592.

22. Schrade A, Sade H, Couraud PO, Romero IA, Weksler BB, Niewoehner J. Expression and localization of claudins‑3 and – 12 in transformed human brain endothelium. Fluids Barriers CNS 2012; 9: 6. doi: 10.1186/ 2045‑8118‑9‑6.

23. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N et al. Size‑selective loosening of the blood‑brain barrierin claudin‑5– deficient mice. J Cell Biol 2003; 161(3): 653– 660.

24. Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T. Exogenous expression of claudin‑5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol 2007; 210(1): 81– 86.

25. Yeung D, Manias JL, Stewart DJ, Nag S. Decreased junctional adhesion molecule‑A expres­sion during blood‑brain barrier breakdown. Acta Neuropathol 2008; 115(6): 635– 642. doi: 10.1007/ s00401‑008‑0364‑4.

26. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ et al. Wnt/ beta‑catenin signaling controls development of the blood‑brain barrier. J Cell Biol 2008; 183(3): 409– 417. doi: 10.1083/ jcb.200806024.

27. Schinkel AH, Wagenaar E, Mol CA, van Deemter L.P‑glycoprotein in the blood‑brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97(11): 2517– 2524.

28. Nies AT, Jedlitschky G, König J, Herold‑Mende C, Steiner HH, Schmitt HP et al. Expression and immunolocalization of the multidrug resistance proteins, MRP1- MRP6(ABCC1- ABCC6), in human brain. Neuroscience 2004; 129(2): 349– 360.

29. Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. Expression, up‑regulation, and transport activity of the multidrug‑resistance protein Abcg2 at the mouse blood‑brain barrier. Cancer Res 2004; 64(9): 3296– 3301.

30. Cornford EM, Hyman S, Swartz BE. The human brain GLUT1 glucose transporter: ultrastructural localization to the blood‑brain barrier endothelia. J Cereb Blood Flow Metab 1994; 14(1): 106– 112.

31. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 1998; 273(37): 23629– 23632.

32. Kido Y, Tamai I, Okamoto M, Suzuki F, Tsuji A. Functional clarification of MCT1- mediated transport of monocarboxylic acids at the blood‑brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm Res 2000; 17: 55– 62.

33. Daneman R. The blood‑brain barrier in health and dissease. Ann Neurol 2012; 72(5): 648– 672. doi: 10.1002/ ana.23648.

34. Larsen JM, Martin DR, Byrne ME. Recent advances in delivery through the blood‑brain barrier. Curr Top Med Chem 2014; 14(9): 1148– 1160.

35. Williams JL, Holman DW, Klein RS. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci 2014; 8: 154. doi: 10.3389/ fncel.2014.00154.

36. Lassmann H. Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol 2005; 15(3): 217– 222.

37. Hladíková M, Štourač P. Matrixové metaloproteinázy v patogenezi roztroušené sklerózy. Cesk Slov Neurol N 2008; 71/ 104(5): 530– 536.

38. Mirshafiey A, Asghari B, Ghalamfarsa G, Jadidi‑Niaragh F, Azizi G. The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Qaboos Univ Med J 2014; 14(1): 13– 25.

39. Bielekova B, Kadom N, Fisher E, Jeffries N, Ohayon J,Richert N et al. MRI as a marker for disease heterogeneity in multiple sclerosis. Neurology 2005; 65(7): 1071– 1076.

40. Cotton F, Weiner HL, Jolesz FA, Guttmann CR. MRI contrast uptake in new lesions in relapsing‑remitting MS followed at weekly intervals. Neurology 2003; 60(4): 640– 646.

41. Zivadinov R, Cox JL. Neuroimaging in multiple sclerosis. Int Rev Neurobio­­l 2007; 79: 449– 474.

42. Bradl M, Lassmann H. Progressive multiple sclerosis. Semin Immunopathol 2009; 31(4): 455– 465. doi: 10.1007/ s00281‑009‑0182‑3.

43. Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal‑appearing white matter in multiple sclerosis. Brain Pathol 2002; 12(2): 154– 169.

44. Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HB. Abnormal blood‑brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin 2013; 4: 182– 189. doi: 10.1016/ j.nicl.2013.12.001.

45. Nicholas JA, Racke MK, Imitola J, Boster AL. First‑line natalizumab in multiple sclerosis: rationale, patient selection, benefits and risks. Ther Adv Chronic Dis 2014; 5(2): 62– 68. doi: 10.1177/ 20406 22313514790.

46. Rosenberg GA, Dencoff JE, Correa YN, Reiners M, Ford CC. Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood‑brain barrier injury. Neurology 1996; 46(6): 1626– 1632.

47. Tomizawa Y, Yokoyama K, Saiki S, Takahashi T, Matsuoka J, Hattori N. Blood‑brain barrier disruption is more severe in neuromyelitis optica than in multiple sclerosis and correlates with clinical disability. J Int Med Res 2012; 40(4): 1483– 1491.

48. Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF,Fryer JP, Kryzer TJ et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 2007; 69(24): 2221– 2231.

49. Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P et al. The role of hypoxia‑inducible factor‑1a, aquaporin‑4 and matrix metalloproteinase‑9 in blood brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 2011; 114(1): 92– 101. doi: 10.3171/ 2010.6.JNS10207.

50. Kuroiwa T, Ting P, Martinez H, Klatzo I. The biphasic opening of the blood‑brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 1985; 68(2): 122– 129.

51. Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C et al. Brain‑specific knock out of hypoxia‑inducible factor‑1alpha reduces rather than increases hypoxic‑ischemic damage. J Neurosci 2005; 25(16): 4099– 4107.

52. Sandoval KE, Witt KA. Blood‑brain barrier tight junction permeability and ischemic stroke. Neurobio­­l Dis 2008; 32(2): 200– 219. doi: 10.1016/ j.nbd.2008.08.005.

53. Abbas A, Aukrust P, Russell D, Krohg‑Sørensen K,Almås T, Bundgaard D et al. Matrix metalloproteinase 7 is associated with symptomatic lesions and adverse events in patients with carotid atherosclerosis. PLoS One 2014; 9(1): 272– 279. doi: 10.1371/ journal.pone.0084935.

54. van Vliet EA, da Costa Araujo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood‑brain barrier eakage may ead to progression of temporal lobe epilepsy. Brain 2007; 130(2): 521– 534.

55. Ramm‑Pettersen A, Nakken KO, Haavardsholm KC,Selmer KK. Occurrence of GLUT1 deficiency syndrome in patients treated with ketogenic diet. Epilepsy Behav 2014; 32: 76– 78. doi: 10.1016/ j.yebeh.2014.01.003.

56. Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P et al. Cyclooxygenase‑2 in epilepsy. Epilepsia 2014; 55(1): 17– 25. doi: 10.1111/ epi.12461.

57. Abbott NJ, Khan EU, Rollinson CM, Reichel A, Janigro D, Dombrowski SM et al. Drug resistance in epilepsy: the role of the blood‑brain barrier. Novartis Found Symp 2002; 243: 38– 47.

58. Ryu JK, McLarnon JG. A leaky blood‑brain barrier, fibrinogen infiltration and microglialreactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 2009; 13: 2911– 2925. doi: 10.1111/ j.1582‑4934.2008.00434.x.

59. Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 2005; 28(4): 202– 208.

60. Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA. Low‑density lipoprotein receptor‑related protein‑1: a serial clearance homeostatic mechanism controlling Alzheimer‘s amyloid beta‑peptide elimination from the brain. J Neurochem 2010; 115(5): 1077– 1089. doi: 10.1111/ j.1471‑4159.2010.07002.x.

61. Garbuzova‑Davis S, Sanberg PR. Blood‑CNS Bar­rier Impairment in ALS patients versus an animal model. Front Cell Neurosci 2014; 8: 21. doi: 10.3389/ fncel.2014.00021.

62. Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T,Takehisa Y et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res 2011; 89(5): 718– 728. doi: 10.1002/ jnr.22594.

63. Drozdzik M, Bialecka M, Mysliwiec K, Honczarenko K, Stankiewicz J, Sych Z. Polymorphism in the P‑glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics 2003; 13(5): 259– 263.

64. Chung YC, Kim YS, Bok E, Yune TY, Maeng S, Jin BK.MMP‑3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson‘s disease. Mediators Inflamm 2013; 4: 351– 355.

65. Johanson CE, Stopa EG, McMillan PN. The blood cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 2011; 686: 101– 131. doi: 10.1007/ 978‑1‑60761‑938‑3_4.

66. Dziegielewska KM, Hinds LA, Møllgard K, Reynolds ML, Saunders NR. Blood‑brain, blood‑cerebrospinal fluid and cerebrospinal fluid‑brain barriers in a marsupial (Macropus eugenii) during development. J Physiol 1988; 403: 367– 388.

67. Kratzer I, Vasiljevic A, Rey C, Fevre‑Montange M, Saunders N, Strazielle N et al. Complexity and developmental changes in the expression pattern of claudins at the blood‑CSF barrier. Histochem Cell Biol 2012; 138(6): 861– 879. doi: 10.1007/ s00418‑012‑1001‑9.

68. Wolburg H, Wolburg‑Buchholz K, Liebner S, Engelhardt B. Claudin‑1, claudin‑2 and claudin‑11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 2001; 307(2): 77– 80.

69. Lehtinen MK, Bjornsson CS, Dymecki SM, Gilbertson RJ, Holtzman DM, Monuki ES. The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci 2013; 33(45): 17553– 17559. doi: 10.1523/ JNEUROSCI.3258‑13.2013.

70. Pan W, Banks WA, Kastin AJ. Permeability of the blood‑brain and blood‑spinal cord barriers to interferons. J Neuroimmunol 1997; 76(1– 2): 105– 111.

71. Ge S, Pachter JS. Isolation and culture of microvascular endothelial cells from murine spinal cord. J Neuroimmunol 2006; 177(1– 2): 209– 214.

72. Kanda T. Biology of the blood‑nerve barrier and its alteration in immune mediated neuropathies. J Neurol Neurosurg Psychiatry 2013; 84(2): 208– 212. doi: 10.1136/ jnnp‑2012‑302312.

73. Latker CH, Wadhwani KC, Balbo A, Rapoport SI. Blood‑nerve barrier in the frog during Wallerian degeneration: Are axons necessary for maintenance of barrier functions? J Comp Neurol 1991; 308(4): 650– 664.

74. Weerasuriya A, Curran GL, Poduslo JF. Blood‑nerve transfer of albumin and its implications for the endoneurial microenvironment. Brain Res 1989; 494(1): 114– 121.

75. Sano Y, Shimizu F, Nakayama H, Abe M, Maeda T,Ohtsuki S et al. Endothelial cells constituting blood‑nerve barrier have highly specialized characteristics as barierr‑forming cells. Cell Struct Funct 2007; 32(2): 139– 147.

76. Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S,Terasaki T et al. Peripheral nerve pericytes modify the blood‑nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 2011; 226(1): 255– 266. doi: 10.1002/ jcp.22337.

77. Sano Y, Kanda Y. Blood‑neural barrier: overview and lates progress. Clin Exper Neuroimunol 2013; 4(2): 220– 227.

78. Kanda T, Numata Y, Mizusawa H. Chronic inflam­matory demyelinating polyneuropathy: decreased claudin‑5 and relocated ZO‑1. J Neurol Neurosurg Psychiatry 2004; 75(5): 765–769.

79. Renaud S, Erne B, Fuhr P, Said G, Lacroix C, Steck AJet al. Matrix metalloproteinases‑9 and –2 in secondary vasculitic neuropathies. Acta Neuropathol 2003; 105(1): 37–42.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 5

2014 Issue 5

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account