Fluorescence Guided Resection of High‑grade Gliomas

Authors: T. Krčík 1;  R. Lipina 1,2;  T. Paleček 1;  T. Hrbáč 1;  M. Smrčka 3
Authors‘ workplace: Neurochirurgická klinika FN Ostrava 1;  Lékařská fakulta OU v Ostravě 2;  Neurochirurgická klinika LF MU a FN Brno 3
Published in: Cesk Slov Neurol N 2014; 77/110(3): 308-313
Category: Review Article


Fluorescence guided resection of high grade gliomas using 5-aminolevulinic acid (5-ALA) is a recently developed neurosurgical method, the objective of which is to achieve higher radicality in glioma resection, in terms of maximal cyto-reduction. Therefore, better initial conditions for adjuvant cancer therapy are prepared. Significant facilitation of peroperative tumour tissue identification is the main advantage of fluorescence-guided resection. Due to its fluorescing properties, 5-ALA and its biological product protoporphyrin IX serve as a metabolic marker of tumour cell presence throughout the neurosurgical procedure. The aim of this review is to describe theoretical principles of the method, as well as its surgical aspects, and to evaluate its benefits for patients with high grade gliomas from the perspective of evidence-based medicine.

Key words:
high grade glioma – 5-aminolevulinic acid – fluorescence guided resection

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


1. McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 2009; 110(1): 156– 162. doi: 10.3171/ 2008.4.17536.

2. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly dia­gnosed glioblastomas. J Neurosurg 2011; 115(1): 3– 8. doi: 10.3171/ 2011.2.JNS10998.

3. Vecht CJ, Avezaat CJ, van Putten WL, Eijkenboom WM, Stefanko SZ. The influence of the extent of surgery on the neurological function and survival in malignant glioma. A retrospective analysis in 243 patients. J Neurol Neurosurg Psychiatry 1990; 53(6): 466– 471.

4. Lacroix M, Abi‑ Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001; 95(2): 190– 198.

5. Stummer W, van den Bent MJ, Westphal M. Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien). 2011; 153(6): 1211– 1218. doi: 10.1007/ s00701- 011- 1001- x.

6. Kowalczuk A, Macdonald RL, Amidei C, Dohrmann G, Erickson RK, Hekmatpanah J et al. Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 1997; 41(5): 1028– 1036.

7. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S.Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 1994; 34(1): 45– 60.

8. Donaghy R. The history of microsurgery in neurosurgery. Clin Neurosurg 1979; 26: 619– 625.

9. Jocham D, Staehler G, Chaussy C, Hammer C, Löhrs U. Laser treatment of bladder tumors following photosensitization with hematoporphyrin derivative. First experimental experiences. Urologe A 1981; 20 (Suppl): 340– 343.

10. Kaye AH, Morstyn G, Ashcroft RG. Uptake and retention of hematoporphyrin derivative in an in vivo/ in vitro model of cerebral glioma. Neurosurgery 1985; 17(6): 883– 890.

11. Kaye AH, Morstyn G, Brownbill D. Adjuvant high‑dose photoradiation therapy in the treatment of cerebral glioma: a phase 1– 2 study. J Neurosurg 1987; 67(4): 500– 505.

12. Obwegeser A, Ortler M, Seiwald M, Ulmer H, Kostron H. Therapy of glioblastoma multiforme: a cumulative experience of 10 years. Acta Neurochir (Wien) 1995; 137(1– 2): 29– 33.

13. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O et al. In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5‑ aminolevulinic acid. J Photochem Photobio­l B 1998; 45(2– 3): 160– 169.

14. Hebeda KM, Saarnak AE, Olivo M, Sterenborg HJ,Wolbers JG. 5‑ aminolevulinic acid induced endogenous porphyrin fluorescence in 9L and C6 brain tumours and in the normal rat brain. Acta Neurochir (Wien) 1998; 140(5): 503– 512.

15. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C et al. Intraoperative detection of malignant gliomas by 5‑ aminolevulinic acid‑induced porphyrin fluorescence. Neurosurgery 1998; 42(3): 518– 525.

16. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence‑ guided resection of glioblastoma multiforme by using 5‑ aminolevulinic acid‑induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 2000; 93(6): 1003– 1013.

17. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ et al. Fluorescence‑ guided surgery with 5‑ aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006; 7(5): 392– 401.

18. Stummer W, Stepp H, Möller G, Ehrhardt A, Leonhard M, Reulen HJ. Technical principles for protoporphyrin‑IX‑ fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien) 1998; 140(10): 995– 1000.

19. Krieg RC, Messmann H, Rauch J, Seeger S, Knuechel R. Metabolic characterization of tumor cell‑ specific protoporphyrin IX accumulation after exposure to 5‑ aminolevulinic acid in human colonic cells. Photochem Photobio­l 2002; 76(5): 518– 525.

20. Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W et al. Transport of 5‑ aminolevulinic acid between blood and brain. Brain Res 2003; 959(2): 226– 234.

21. Tonn JC, Stummer W. Fluorescence‑ guided resection of malignant gliomas using 5‑ aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 2008; 55: 20– 26.

22. Regula J, MacRobert AJ, Gorchein A, Buonac­-corsi GA, Thorpe SM, Spencer GM et al. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX: a pilot study. Gut 1995; 36(1): 67– 75.

23. Mlkvy P, Messmann H, Debinski H, Regula J, Conio M, MacRobert A et al. Photodynamic therapy for polyps in familial adenomatous polyposis –  a pilot study. Eur J Cancer 1995; 31A(7– 8): 1160– 1065.

24. Tonn JC, Stummer W. Fluorescence‑ guided resection of malignant gliomas using 5‑ aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 2008; 55: 20– 26.

25. Feigl GC, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A et al. Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5‑ aminolevulinic acid and intraoperative monitoring. J Neurosurg 2010; 113(2): 352– 357. doi: 10.3171/ 2009.10.JNS09447.

26. Eyüpoglu IY, Hore N, Savaskan NE, Grummich P,Roessler K, Buchfelder M et al. Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLoS One. 2012; 7(9): e44885. doi: 10.1371/ journal.pone.0044885.

27. Tsugu A, Ishizaka H, Mizokami Y, Osada T, Baba T,Yoshiyama M et al. Impact of the combination of 5‑ aminolevulinic acid‑induced fluorescence with intraoperative magnetic resonance imaging‑ -guided surgery for glioma. World Neurosurg 2011; 76(1– 2): 120– 127. doi: 10.1016/ j.wneu.2011.02.005.

28. Ausman JI. Does gross total removal of a brain tumor produce greater longevity? Surg Neurol 2009; 71(1): 154. doi: 10.1016/ j.surneu.2008.10.012.

29. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987– 996.

30. Chi A, Norden AD, Wen PY. Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther 2007; 7(11): 1537– 1560.

31. Stummer W, Reulen HJ, Meinel T, Pichlmeier U,Schumacher W, Tonn JC et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 2008; 62(3): 564– 576. doi: 10.1227/ 01.neu.0000317304.31579.17.

32. Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C et al. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5‑ aminolevulinic acid glioma resection study. Clinical article. J Neurosurg 2011; 114(3): 613– 623. doi: 10.3171/ 2010.3.JNS097.

33. Inoue T, Endo T, Nagamatsu K, Watanabe M, Tominaga T. 5‑ aminolevulinic Acid Fluorescence‑ guided Resection of Intramedullary Ependymoma: Report of 9 Cases. Neurosurgery 2013 Jun;72 (2 Suppl Operative): ons159– 68. doi: 10.1227/ NEU.0b013e 31827bc7a3.

34. Eicker SO, Floeth FW, Kamp M, Steiger HJ, Hänggi D. The impact of fluorescence guidance on spinal intradural tumour surgery. Eur Spine J 2013; 22(6): 1394– 401. doi: 10.1007/ s00586- 013- 2657-0.

35. Eicker S, Sarikaya‑ Seiwert S, Borkhardt A, Gierga K,Turowski B, Heiroth HJ et al. ALA‑induced porphyrin accumulation in medulloblastoma and its use for fluorescence‑ guided surgery. Cent Eur Neurosurg 2011; 72(2): 101– 103. doi: 10.1055/ s‑ 0030- 1252010.

36. Bekelis K, Valdés PA, Erkmen K, Leblond F, Kim A, Wilson BC et al. Quantitative and qualitative 5‑ aminolevulinic acid‑induced protoporphyrin IX fluorescence in skull base meningiomas. Neurosurg Focus 2011; 30(5): E8. doi: 10.3171/ 2011.2.FOCUS1112.

37. Utsuki S, Oka H, Sato K, Shimizu S, Suzuki S,Fujii K. Fluorescence dia­gnosis of tumor cells in hemangioblastoma cysts with 5‑ aminolevulinic acid. J Neurosurg 2010; 112(1): 130– 132. doi: 10.3171/ 2009.5.JNS08442.

38. Nestler U, Warter A, Cabre P, Manzo N. A case of late‑ onset multiple sclerosis mimicking glioblastoma and displaying intraoperative 5‑ aminolevulinic acid fluorescence. Acta Neurochir (Wien) 2012; 154(5): 899– 901. doi: 10.1007/ s00701– 012– 1319– z.

39. Widhalm G, Wolfsberger S, Minchev G, Woehrer A, Krssak M, Czech T et al. 5‑ aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer 2010; 116(6): 1545– 1552. doi: 10.1002/ cncr.24903.

40. Ewelt C, Floeth FW, Felsberg J, Steiger HJ, Sabel M,Langen KJ et al. Finding the anaplastic focus in diffuse gliomas: the value of Gd‑ DTPA enhanced MRI, FET‑ PET, and intraoperative, ALA‑ derived tissue fluorescence. Clin Neurol Neurosurg 2011; 113(7): 541– 547. doi: 10.1016/ j.clineuro.2011.03.008.

41. Šteňo A, Illéš R, Rychlý B, Fabian M, Šteňo J. Detection of anaplastic foci within infiltrative gliomas with nonsignificant contrast enhancement using 5‑ aminolevulic acid –  a report of five cases. Cesk Slov Neurol N 2012; 75/ 108(2): 227– 232.

Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 3

2014 Issue 3

Most read in this issue

This topic is also in:

Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account