Toxic Ef­fects of Pesticides


Authors: J. Žďárová Karasová
Authors‘ workplace: Katedra toxikologie a vojenské farmacie, Fakulta vojenského zdravotnictví v Hradci Králové, Univerzita obrany, Brno ;  Centrum biomedicínského výzkumu, FN v Hradci Králové
Published in: Cesk Slov Neurol N 2017; 80/113(2): 164-171
Category: Review Article
doi: 10.14735/amcsnn2017164

Práce vznikla za podpory Projektu rozvoje organizace 1011 –  DZRO ZHN (Ministerstvo obrany, Česká republika) a RVO –  FNHK 00179906 (Ministerstvo zdravotnictví, Česká republika).

Overview

Although intoxication with organophosphates have occurred rather sporadically in the Czech Republic, self-poisoning with organophosphates may represent a serious clinical issue in rural regions of the developing world. According to an estimation from the World Health Organization, up to two million people are poisoned every year. Medical management is usually difficult, associated with the mortality rate of above 15%. Based on chemical-physical properties, the central nervous system is one of the most important targets for organophosphates. Brain damage is defined as a progressive damage resulting from cholinergic neuronal excitotoxicity and dysfunction of the brain cholinergic regions. Loss of neurons, damage to cholinergic and non-cholinergic pathways and degeneration of axons is usually observed in the central nervous system. This delayed secondary neuronal damage might be largely responsible for persistent neuropsychiatric and neurological impairments, such as cognitive, motor and sensory deficits.

Key words:
acetylcholinesterase – pesticides – central nervous system – neuron degeneration – NMDA receptor – cholinergic system

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


Sources

1. Balali-Mood M, Balali-Mood K. Neurotoxic disorders of organophosphorus compounds and their managements. Arch Iran Med 2008;11(1):65– 89.

2. Eddleston M, Buckley NA, Eyer P, et al. Management of acute organophosphorus pesticide poisoning. Lancet 2008;371(9612):597– 607.

3. Vlček V, Pohanka M. Enviromentální aspekty užití organofosforových pesticidů schválených k užití v ČR. Chem Listy 2011;105:908– 12.

4. Mzik M, Korabecny J, Nepovimova E, et al. An HPLC- MS method for the quantification of new acetylcholinesterase inhibitor PC 48 (7-MEOTA-donepezil like compound) in rat plasma: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1020:85– 9. doi: 10.1016/ j.jchromb.2016.02.038.

5. Karasova JZ, Hroch M, Musilek K, et al. Small quaternary inhibitors K298 and K524: Cholinesterases inhibition, absorption, brain distribution, and toxicity. Neurotox Res 2016;29(2):267– 74. doi: 10.1007/ s12640-015-9582-4.

6. Sepsova V, Karasova JZ, Tobin G, et al. Cholinergic properties of new 7-methoxytacrine-donepezil derivatives. Gen Physiol Biophys 2015;34(2):189– 200. doi: 10.4149/ gpb_2014036.

7. Bajgar J. Organophosphates/ nerve agent poison­ing: mechanism of action, dia­gnosis, prophylaxis, and treatment. Adv Clin Chem 2004;38:151– 216.

8. Mar­rs TC. Organophosphate poisoning. Pharmacol Ther 1993;58(1):51– 66.

9. Jokanovic M. Medical treatment of acute poison­ing with organophosphorus and carbamate pesticides. Toxicol Lett 2009;190(2):107– 15. doi: 10.1016/ j.toxlet.2009.07.025.

10. He YF, Zhu JH, Huang F, et al. Age-dependent loss of cholinergic neurons in learn­ing and memory-related brain regions and impaired learn­ing in SAMP8 mice with trigeminal nerve damage. Neural Regen Res 2014;9(22):1985– 94. doi: 10.4103/ 1673-5374.145380.

11. Aigner TG. Pharmacology of memory: cholinergic.glutamatergic interaction. Curr Opin Neurobio­l 1995;5(2):155– 60.

12. Beierlein M. Synaptic mechanisms underly­ing cholinergic control of thalamic reticular nucleus neurons. J Physiol-London 2014;592(19):4137– 45. doi: 10.1113/ jphysiol.2014.277376.

13. Santos MD, Pereira EF, Aracava Y, et al. Low concentrations of Pyridostigmine prevent soman-induced inhibition of GABA-ergic transmis­sion in the central nervous system: involvement of muscarinic receptors. J Pharmacol Exp Ther 2003;304(1):254– 65.

14. Jett DA. Neurological aspect of chemical terorism. Ann Neurol 2007;61(1):9– 13.

15. Petras JM. Neurology and neuropathology of Soman-induced brain injury: an overiew. J Exp Anal Behav 1994;61(2):319– 29.

16. Granacher RP. Traumatic brain injury: methods for clinical and forensic neuropsychiatric as­ses­sment. 2nd ed. Boca Raton: CRC Press 2007:26– 32.

17. Job A, Bail­le V, Dorandeu F, et al. Distortion product otoacoustic em­mis­sion as non-invasive bio­markers as predictors of soman-induced central neurotoxicity: a preliminary study. Toxicology 2007;238(2– 3):119– 29.

18. Carpentier P, Delamanche IS, Le Bert M, et al. Seisure-related open­ing of the blood-brain bar­rier induced by soman: pos­sible cor­relation with the acute neuropathology observed in poisoned rats. Neurotoxicology 1990;11(3):493– 508.

19. Gokel Y. Subarachnoid hemor­rhage and rhabdomyolysis induced acute renal failure complication organophosphate intoxication. Ren Fail 2002;24(6):867– 71.

20. Hu CY, Hsu CH, Robinson CP. Ef­fects of soman on calcium uptake in microsomes and mitochondria from rabit aorta. J Appl Toxicol 1991;11(4):293– 6.

21. Pazdernik TL, Emerson MR, Cross R, et al. Soman-induces seisures: limbic activity, oxidative stress and neuroprotective proteins. J Appl Toxicol 2001;21(Suppl 1): S87– 94.

22. Dhote F, Pein­nequin A, Carpentier P, et al. Prolonged inflam­matory gene response fol­low­ing soman-induced seisures in mice. Toxicology 2007;238(2– 3):166– 76.

23. Newey CR, Sarwal A, Hantus S. Continuous electroencephalography (cEEG) changes precede clinical changes in a case of progres­sive cerebral edema. Neurocrit Care 2013;18(2):261– 5. doi: 10.1007/ s12028-011-9650-4.

24. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain bar­rier disorder in Alzheimer’s disease. Acta Neuropathol 2009;118(1):103– 13. doi: 10.1007/ s00401-009-0522-3.

25. Abbott NJ, Patabendige AAK, Dolman DEM, et al. Structure and function of the blood– brain bar­rier. Neurobio­l Dis 2010;37(1):13– 25. doi: 10.1016/ j.nbd.2009.07.030.

26. Abbott NJ, Hans­son E. Astrocyte –  endothelial interactions at the blood-brain bar­rier. Nat Rev Neurosci 2006;7(1):41– 53.

27. Abbott NJ, Ron­nback L, Hans­son E. Astrocyte-endothelial interactions at the blood-brain bar­rier. Nat Rev Neurosci 2006;7(1):41– 53.

28. Zolezzi JM, Inestrosa NC. Peroxisome proliferator-activated receptor and Alzheimer disease: Hitt­ing the blood-brain bar­rier. Mol Neurobio­l 2013;48(3):438– 51. doi: 10.1007/ s12035-013-8435-5.

29. Damodaran TV, Bilska MA, Rahman AA, et al. Sarin cause early dif­ferential alteration and persistent overexpres­sion in mRNAs cod­ing for glialfibril­lary acidic protein (GFAP) and vimentin genes in the central nervous system of rats. Neurochem Res 2002;27(5):407– 15.

30. Angoa-Perez M, Kreipke CW, Thomas DM, et al. Soman increases neuronal COX-2 levels: pos­sible link between seisures and protracted neuronal damage. Neurotoxicology 2010;31(6):738– 46. doi: 10.1016/ j.neuro.2010.06.007.

31. Chapman S, Kadar T, Gilat E. Seisure duration fol­low­ing sarin exposure af­fects neuroinflamatory markers in the rat brain. Neurotoxicology 2006;27(2):277– 83.

32. Rodgers KE, El­lefson DD. Mechanism of the modulation of murine peritoneal cell function and mast cell degranulation by low doses of malathion. Agents Actions 1992;35(1– 2):57– 63.

33. Flipo D, Bernier J, Girard D, et al. Combined ef­fect of selected insecticides on humoral im­mune response in mice. Int J Im­munopharmacol 1992;14(5):747– 52.

34. Rodgers K, Xiong S. Ef­fect of administration of malathion for 14 days on macrophage function and mast cell degranulation. Fundam Appl Toxicol 1997;37(1):95– 9.

35. Banks ChN, Lein PJ. A review of experimental evidence link­ing neurotoxic organophosphorus compounds and inflam­mation. Neurotoxicology 2012;33(3):575– 84. doi: 10.1016/ j.neuro.2012.02.002.

36. Ricciotti E, Fitzgerald GA. Prostaglandins and inflam­mation. Arterioscler Thromb Vasc Biol 2011;31(5): 986– 1000. doi: 10.1161/ ATVBAHA.110.207449.

37. Milatovic D, Gupta RC, Aschner M. Anticholinesterase toxicity and oxidative stres­s. Scientific World J 2006;6:295– 310.

38. Hamilton MG, Posavad C. Alteration of calcium influx in rat cortical synaptosomes by soman. Neuroreport 1991;2(5):273– 6.

39. Siesjo BK, Siesjo P. Mechanisms of secondary brain injury. Eur J Anesthesiol 1996;13(3):247– 68.

40. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000;1(2):120– 9.

41. Kadar T, Cohen G, Sahar R, et al. Long-term study of brain lesions fol­low­ing soman, in comparison to DFP and metrazol poisoning. Hum Exp Toxicol 1992;11(6):517– 23.

42. Kadar T, Shapira S, Cohen G, et al. Sarin-induced neuropathology in rats. Hum Exp Toxicol 1995;14(3):252– 9.

43. Loh Y, Swanberg MM, Ingram MV, et al. Case report: long-term cognitive sequelae of sarin exposure. Neurotoxicology 2010;31(2):244– 6. doi: 10.1016/ j.neuro.2009.12.004.

44. Karchmar AG. Anticholinesterases and war gases. In: Karchmar, ed. Explor­ing the vertebrate central cholinergic nervous system. New York: Springer 2007:237– 310.

45. Mar­rs, TC, Vale JA. Management of organophosphorus pesticide poisoning. In: Gupta RC, ed. Toxicology of Organophosphorus and Carbamate Compounds. Amsterdam: Elsevier Academic Pres­s 2006:715– 33.

46. Ter­ry AV jr. Functional consequence of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Therapeut 2012;134(3):355– 65. doi: 10.1016/ j.pharmthera.2012.03.001.

47. Shih TM, Scremin OU, Roch M, et al. Cerebral acetylcholine and choline contents and turnover fol­low­ing low-dose acetylcholinesterase inhibitors treatment in rats. Arch Toxicol 2006;80(11):761– 7.

48. Karasova JZ, Novotny L, Antos K, et al. Time-depend­ing changes in concentration of two clinical­ly used acetylcholinesterase reactivators (HI-6 and obidoxime) after administration in vivo by us­ing HPLC techniques. Anal Sci 2010;26(1):63– 7.

49. Karasova JZ, Kas­sa J, Jung YS, et al. Ef­fect of several new and cur­rently available oxime cholinesterase reactivators on tabun-intoxicated rats. Int J Mol Sci 2008;9(11):2243– 52. doi: 10.3390/ ijms9112243.

50. Karasova JZ, Zemek F, Musilek K, et al. Time-dependent changes of oxime K027 concentrations in dif­ferent parts of rat central nervous system. Neurotox Res 2013;23(1):63– 8. doi: 10.1007/ s12640-012-9329-4.

51. Karasova JZ, Pavlik M, Chladek J, et al. Hyaluronidase: its ef­fects on HI-6 dichloride and dimethanesulphonate pharmacokinetic profile in pigs. Toxicol Lett 2013;220(2):167– 71. doi: 10.1016/ j.toxlet.2013.04.013.

52. Karasova JZ, Zemek F, Kas­sa J, et al. Entry of oxime K027 into the dif­ferent parts of rat brain: comparison with obidoxime and oxime HI-6. J Appl Biomed 2014;12:25– 9.

53. Karasova JZ, Bajgar J, Jun D, et al. Time-course changes of acetylcholinesterase activity in blood and some tis­sues in rats after intoxication by Rus­sian VX. Neurotox Res 2009;16(4):356– 60. doi: 10.1007/ s12640-009-9102-5.

54. Jiang W, Duysen EG, Hansen H, et al. 2010 Mice treat­ed with chlorpyrifos or chlorpyrifos oxon have organophosphorylated tubulin in the brain and disrupted microtubule structures, suggest­ing a role for tubulin in neurotoxicity as­sociated with exposure to organophosphorus agents. Toxicol Sci 2010;115(1):183– 93. doi: 10.1093/ toxsci/ kfq032.

55. Grigoryan H, Lockridge O. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: implications for neurotoxicity. Toxicol Appl Pharmacol 2009;240(2):143– 8. doi: 10.1016/ j.taap.2009.07.015.

56. Peeples ES, Schopfer LM, Duysen EG, et al. Albumin, a newbio­marker of organophosphorus toxicant exposure, identified by mass spectrometry. Toxicol Sci 2005;83(2):303– 12.

57. Bomser JA, Casida JE. Diethylphosphorylation of rat cardiac M2 muscarinic receptor by chlorpyrifos oxon in vitro. Toxicol Lett 2001;119(1):21– 6.

58. Quistad GB, Sparks SE, Casida JE. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. Toxicol Appl Pharmacol 2003;173(1):48– 55.

59. Chaiken IM, Smith EL. Reaction of a specific tyrosine residue of papain with diisopropylfluorophosphate. J Biol Chem 1969;244(15):4247– 50.

60. Richards PG, Johnson MK, Ray DE. Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhanc­ing drugs. Mol Pharmacol 2000;58(3):577– 83.

61. Auman JT, Seidler FJ, Slotkin TA. Neonatal chlorpyrifos exposure targets multiple proteins govern­ing the hepatic adenylyl cyclase signal­ing cascade: implications for neurotoxicity. Brain Res Dev Brain Res 2000;121(1):19– 27.

62. Lush MJ, Li Y, Read DJ, et al. Neuropathy target esterase and a homologous Drosophila neurodegeneration--as­sociated mutant protein contain a novel domain conserved from bacteria to man. Biochem J 1998;332(1):1– 4.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 2

2017 Issue 2

Most read in this issue
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account