The Effects of Robotic Gait Rehabilitation on Psychosomatic Indicators at the People with Different Etiology of Mental Retardation


Authors: S. Fischer 1;  R. Ptáček 2;  I. Žukov 2;  K. Sláma 1
Authors‘ workplace: Pedagogická fakulta UJEP, Masarykova nemocnice Ústí nad Labem 1;  Psychiatrická klinika 1. LF a VFN v Praze 2
Published in: Cesk Slov Neurol N 2017; 80(6): 695-699
Category: Original Paper
doi: https://doi.org/10.14735/amcsnn2017695

Overview

Aim:
The aim of study was to find out the effect of robotic gait rehabilitation on psychosomatic indicators at people with different etiology of mental retardation. A stimulation and eventual development of unaffected or preserved abilities of individuals belong among cur­rent trends in the case of mental retardation and the treatment to related causal neurological disorders and diseases. The rehabilitation focused on environmental factors with aim to integrate individual into society is another current trend. For a decision to realize this research study we have been inspired by results of numerous studies, reported, for example, about the results of influence of robotic rehabilitation on psychosomatically health in the case of cerebral palsy.

Material and methods:
A total of 65 children in age from 3 to 6 years (42 boys, 23 girls) were observed in the beginning of rehabilitation and then after 6 weeks. Investigated patients were selected into three groups. 21 patients were with cerebral palsy, 21 with teratogenic and 20 with postnatal etiology. Psychosomatic indicators were monitored. The International Classification of Functioning, Disability and Health (ICF), and Functional Independence Measure were used as a methodological background.

Results:
We observed statistically significant positive differences in somatic indicators in the cause of cerebral palsy. In the case of teratogenic etiology was observed, although not statistically significant, but also an evident improvement of somatic indicators. In the case of all observed groups of patients we can talk about positive improvement in social adaptability. Statistically significant (p < 0.05) were findings again in case of cerebral palsy.

Conclusions:
Results of the research indicate that the robotic gait rehabilitation may be usable as a rehabilitative and supportive method also in the treatment to mentally retarded persons. In the case of its use it is appropriate to take into account of the origin etiology of the disorder. Definitely we can recommend a preference for this method for mentally retarded persons with cerebral palsy after hypoxia.

Key words:
robotic gait rehabilitation – Lokomat – mental retardation – cerebral palsy – social adaptability – neuroplasticity

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


Chinese summary - 摘要

机器人步态康复治疗对不同病因智力障碍患者身心指标的影响

目标:

本研究的目的是找出机器人步态康复对不同病因智力障碍患者身心指标的作用。一项刺激和个体未受影响或保留的能力的最终发展符合当前智力障碍以及相关因果神经紊乱和疾病治疗的趋势。以个人融入社会为目的的环境因素复原是当前研究的另一个趋势。为了实现这项研究,我们受到了众多研究成果的启发,例如脑瘫病例中机器人康复对身心健康的影响。

材料和方法:

共有65名3〜6岁的儿童(42名男孩,23名女孩)参与该研究,并在康复训练初期和康复训练6周后对其进行观察。 调查患者分为三组:脑瘫21例,畸形21例,出生后患病20例。监测其身心指标。方法学背景包括:国际功能、残疾与健康分类(ICF)和功能独立性测量。

结果:

我们观察到脑瘫病因中躯体指标的统计学显著性差异。在观察到致畸病因的情况下,尽管没有统计学意义,但躯体指标也有明显改善。在所有观察患者中,我们可以看到社会适应性的积极改善。 在脑瘫中再次观察到具有统计学显著性(p <0.05)的发现。

结论:

研究结果表明,机器人步态康复治疗也可以作为治疗智力迟钝者的康复支持手段。在已使用该治疗方法的情况下,将病症的原始病因考虑进来也是必要的。我们推荐使用这种方法来治疗伴有缺氧导致的脑瘫症状的弱智人士。

关键词:

机器人步态康复 - Lokomat - 智力迟钝 - 脑瘫 - 社会适应性 - 神经可塑性


Sources

1. International Clas­sification of Dis­eases (ICD-10). Geneva: WHO 2014.

2. Luckas­son R, Edwards W. Mental Retardation: Definition, Clas­sification, and Systems of Supports. Washington DC: American As­sociation on Intel­lectual and Devel­opmental Disabilities 2002.

3. Pichot P. Child and Adolescent Psychiatry, Mental Retardation, and Geriatric Psychiatry. Berlin: Springer Science & Business Media 2013.

4. Freeman M, Pathare S. WHO Resource Book on Mental Health, Human Rights and Legislation. Geneva: World Health Organization 2005.

5. Urbano RC, eds. International Review of Research in Mental Retardation. Elsevier: Academic Press 2010.

6. Baroff S, Ol­ley JG. Mental retardation: Nature, Cause, and Management. 3rd ed. Routledge: Taylor & Francis 2014.

7. International Clas­sification of Functioning, Disability and Health (ICF), Geneva: WHO 2001. Functional Independence Measure, Encyclopedia of Clinical Neuropsychology. Springer 2011.

8. World Health Organization: Car­­ing for children and adolescents with mental disorders: sett­­ing WHO directions, Geneva: WHO 2014.

9. Schuler T, Brütsch K, Mül­ler R, et al. Virtual realities as motivational tools for robotic as­sisted gait train­­ing in children: A surface electromyography study. NeuroRehabilitation 2011;28(4):401– 11. doi: 10.3233/ NRE-2011-0670.

10. Klobucká S, Žiaková E, Klobucký R. Vplyv prostredia virtuálnej reality počas roboticky asistovaného lokomočného tréningu na motorické funkcie pa­cientov s detskou mozgovou obrnou. Cesk Slov Neurol N 2013;76/ 109(6):702– 11.

11. Barbeau H. Locomotor train­­ing in neurorehabilitation: emerg­­ing rehabilitation concepts. Neurorehabil Neural Repair 2013;17(1):3– 11. doi: 10.1177/ 0888439002250442.

12. Wiart L, Rosychuk RJ, Wright FV. Evaluation of the ef­fectiveness of robotic gait train­­ing and gait-focused physical ther­apy programs for children and youth with cerebral palsy: a mixed methods RCT. BMC Neurol 2016;16:88. doi: 10.1186/ s12883-016-0582-7.

13. Bayon C, Raya R, Lerma Lara S, et al. Robotic Ther­apies for Children with Cerebral Palsy: A Systematic Review. Translational Biomed 2016;7(1):1– 10. doi: 10.21767/ 2172-0479.100044.

14. Jezernik S, Colombo G, Kel­ler T, et al. Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation 2003;6(2):108– 15. doi: 10.1046/ j.15251403.2003.03017.x.

15. Hornby TG, Zemon DH, Campbell D. Robotic-as­sisted, body-weight-supported treadmill train­­ing in individuals fol­low­­ing motor incomplete spinal cord injury. Physical Ther­apy 2005;85(1):52– 66.

16. Pen­nycott A, Wyss D, Val­lery H, et al. Towards more ef­fective robotic gait train­­ing for stroke rehabilitation: a review. J Neuroeng Rehabil 2012;9:65. doi: 10.1186/ 1743-0003-9-65.

17. Am­man-Reif­fer C, et al. Ef­fectiveness of robot-as­sisted gait train­­ing in children with cerebral palsy: a bicenter, pragmatic, randomized, cros­s-over trial. BMC Pediatr 2017;17:64. doi: 10.1186/ s12887-017-0815-y.

18. Morawietz C, Mof­fat F. Ef­fects of locomotor train­­ing after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil 2013;94(11):2297– 308. doi: 10.1016/ j.apmr.2013.06.023.

19. Mehrholz J, Kugler J, Pohl M. Locomotor train­­ing for walk­­ing after spinal cord injury. Cochrane Database Syst Rev 2012;11:CD006676. doi: 10.1002/ 14651858.CD006676.pub3.

20. Kahn JH, Hornby TG. Rapid and long-term adaptations in gait sym­metry fol­low­­ing unilateral step train­­ing in people with hemiparesis. Physical Ther 2009;89(5):474– 83. doi: 10.2522/ ptj.20080237.

21. Fleerkotte BM, Koopman B, Buurke JH, et al. The ef­fect of impedance-control­led robotic gait train­­ing on walk­­ing ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroeng Rehabil 2014;4(11):26. doi: 10.1186/ 1743-0003-11-26.

22. Westlake KP, Patten C. Pilot study of Lokomat versus manual-as­sisted treadmill train­­ing for locomotor recovery post-stroke. J Neuroeng Rehabil 2009;6:18. doi: 10.1186/ 1743-0003-6-18.

23. Novak I. Evidence-based dia­gnosis, health care, and rehabilitation for children with cerebral palsy. J Child Neurol 2014;29(8):1141– 56. doi: 10.1177/ 0883073814535503.

24. Kumar I, Singh AR, Akhtar S. Social development of children with mental retardation. Ind Psychiatry J2009;18(1):56– 9. doi: 10.4103/ 0972-6748.57862.

25. Calabro RC, Ritano S, Leo A, et al. Can robot-as­sisted movement train­­ing (Lokomat) improve functional recovery and psychological wel­l-be­­ing in chronic stroke? Promis­­ing findings from a case study. Functional Neurology 2014;29(2):139– 41. doi: 10.11138/ FNeur/ 2014.29.2.139.

26. Taveggia G, Borboni A, Mulé Ch, et al. Conflict­­ing results of robot-as­sisted versus usual gait train­­ing dur­­ing postacute rehabilitation of stroke patients: a randomized clinical trial. Int J Rehabil Res 2016;39(1):29– 35. doi: 10.1097/ MRR.0000000000000137.

27. Druzbicki M, Rusek V, Snela S, et al. Functional ef­fects of robotic-as­sisted locomotor treadmill ther­apy in children with cerebral palsy. J Rehabil Med 2013;45(4): 358– 63 doi: 10.2340/ 16501977-1114.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 6

2017 Issue 6

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account