The Utilisation of Ultrasound for Navigation in Neurosurgery

Authors: M. Filip 1,2;  P. Linzer 1;  P. Jurek 1
Authors‘ workplace: Neurochirurgické oddělení, Krajská nemocnice T. Bati, a. s., Zlín 1;  Ústav rehabilitace, LF OU a FN Ostrava 2
Published in: Cesk Slov Neurol N 2017; 80(6): 627-637
Category: Minimonography
doi: 10.14735/amcsnn2017627


Intraoperative sonography (IOS) in neurosurgery is a standard acquisition tool for real-time imaging of brain tissue and target structures. The technological advance of ultrasound devices has led to miniaturisation of ultrasound probes and enabled their use in the limited space of craniotomy. The quality of IOS imaging improved after introducing high-frequency probes with high spatial resolution. The environment of brain tissue provides favourable insonation conditions and enables precise localisation and navigation of surgical access to all com­mon brain tumours, including gliomas, metastases, meningiomas and cavernomas. The basic imaging is B-mode (two-dimensional; 2D) and can be supplemented by 3D (three-dimensional; 3D) reconstruction to improve orientation. Brain tumours are displayed as hyperechoic structures compared to the brain tissue. The integration of ultrasound devices with optical neuronavigation facilitates the orientation in IOS even more. Besides the navigational function, the IOS is suitable for detection and localisation of tumour remnants during removal of gliomas and metastases. In this way the IOS contributes to maximum extent of resection. The contrast-enhanced IOS further improves image quality and reduces the impact of artefacts. Duplex ultrasonography using colour Doppler or power Doppler makes it possible to localise vessels and to evaluate their relation to the tumour or to localise its vessel supply. In addition to localisation of tumours, it is possible to assess their internal structure and lead biopsies and navigate access. The main advantages of IOS are precise real-time information, availability, easy repeatability and high-quality imaging. The prerequisite for effective IOS imaging is long-term experience with this imaging modality. The drawbacks of the IOS include the impossibility to navigate craniotomy and the occurrence of artefacts during resection control.

Key words:
ultrasound imaging – intraoperative imaging – brain tumour – neuronavigation – tumour border

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


1. Beneš V, Netuka D, Kramář F, et al. Multifunctional surgical suite (MFSS) with 3.0 T iMRI: 17 months of experience. Acta Neurochir Suppl 2011;109:145-9. doi: 10.1007/ 978-3-211-99651-5_22.

2. Chen KT, Lee ST, Wu CT. The clinical value of intra­operative mobile computed tomography in manag­­ing high-risk surgical patients with traumatic brain injury –  a single tertiary trauma Center Experience. World Neurosurg 2017;98:727–33.e3. doi: 10.1016/ j.wneu.2016.11.090.

3. Regelsberger J, Lohman F, Helmke K, et al. Ultrasound-guided surgery of deep seated brain leasions. Eur J Ultrasound 2000;12(2):115–21.

4. Ham­moud MA, Ligon BL, ElSouki BL et al. Use of intra­operative ultrasound for localiz­­ing tumors and determin­­ing the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 1996;84:737–41. doi: 10.3171/ jns.1996.84.5.0737.

5. Gerganov VM, Samii A, Giordano M, et al. Two-dimensional high-end ultrasound imag­­ing compared to intraperative MRI dur­­ing resection of low-grade gliomas. J Clin Neurosci 2011;18(5):669–73. doi: 10.1016/ j.jocn.2010.08.017.

6. Chacko AG, Kumar NK, Chacko G, et al. Intraoperative ultrasound in determin­­ing the extent of resection of parenchymal brain tumors –  a comparative study with computed tomograhpy and histolopathology. Acta Neurochir 2003;145(9):743–8. doi: 10.1007/ s00701-0030009-2.

7. Wang YD, Wang Y, Mao Y, et al. Intraoperative ultrasound as­sistance in the resection of smal­l, deep-seat­ed, or il­l-defined intracerebral lesions. Chin Med J (Engl) 2011;124(20):3302–8.

8. LeRoux PD, Winter TC, Berger MS, et al. A comparison between preoperative magnetic resonance and intraoperative ultrasound tumor volumes and margins. J Clin Ultrasound 1994;22(1):29–36.

9. Unsgaard G, Gron­ningsaeter A, Om­medal S, et al. Brain operations guided by real-time two-dimensional ultrasound: new pos­sibilities as a result of improved image quality. Neurosurgery 2002;51(2):402–11.

10. Školoudík D, Majvald Č, Chudoba V. Možnost dia­gnostiky tkáňových lézí mozku pomocí ultrazvuku. Cesk Slov Neurol N 1999;3:135–40.

11. Gron­ningsaeter A, Kleven A, Om­medal A, et al. SonoWand, an ultrasound-based neuronavigation system. Neurosurgery 2000;47(6):1373–9.

12. Arlt F, Chalopin C, Müns A, et al. Intraoperative 3D contrast-enhanced ultrasound (CEUS): a prospective study of 50 patients with brain tumors. Acta Neurochir 2016;158(4):685–94. doi: 10.1007s00701-016-2738-z.

13. Reid MH. Ultrasonic vizualisation of a cervical cord cystic astrocytoma. Am J Roentgenol 1978;131:907–8. doi: 10.2214/ ajr.131.5.907.

14. Rubin J, Dorman G. Intraoperative neurosurgical ultrasound in the localisation and characterisation of intracranial mas­ses. Radiology 1983;148:173–5. doi: 10.1148/ radiology.148.2.6867352.

15. Milhorat TH, Bolognese PA. Tailored operative technique for Chiari type I malformation us­­ing intraoper­ative color Doppler ultrasonography. Neurosurgery 2003;53(4):899–905.

16. Filip M, Linzer P, Šámal F. Peroperační 3D sonografie v neurochirurgii. Neurol pro praxi 2010;11(6):415–7.

17. Unsgaard G, Selbekk T, Brostrup Mül­ler T, et al. Ability of navigated 3D ultrasound to delineate gliomas and metastases –  comparison of image interpretations with histopathology. Acta Neurochir 2005;147(12):1259–69. doi: 10.1007/ s00701-005-0624-1.

18. Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001;95(2):190–8. doi: 10.3171/ jns.2001.95.2.0190.

19. Filip M, Paleček T, Starý M, et al. Ultrazvukový peroperační monitor­­ing glioblastomů v 2D obraze a reálném čase. Cesk Slov Neurol N 2004;67/ 100:42–7.

20. Camp SJ, Apostolopoulos V, Raptopoulos V, et al. Objective image analysis of real-time three-dimensional intraoperative ultrasound for intrinsic brain tumour surgery. J Ther Ultrasound 2017;5:2. doi: 10.1186/ s40349-017-0084-0.

21. Sæther CA, Torsteinsen M, Torp SH, et al. Did survival improve after implementation of intraoperative neuronavigation and 3D ultrasound in glioblastoma surgery? A retrospective analysis of 192 primary operations. J Neurol Surg A Cent Eur Neurosurg 2012;73(2):73–8. doi: 10.1055/ s-0031-1297247.

22. Mursch K, Stolz M, Brück W, et al. The value of intra­operative ultrasonography dur­­ing resection of the re­lapsed ir­radiated malignant gliomas in the brain. Ultrasonography 2017;36(1):60–5. doi: 10.14366/ usg.16015.

23. Petridis AK, Anokhin M, Vavruska J et al. The value of intraoperative sonography in low grade glioma surgery. Clin Neurol Neurosurg 2015;131:64–7. doi:10.1016/ j.clineuro.2015.02.004.

24. Mattei L, Prada F, Legnani FG, et al. Neurosurgical tools to extend resection in hemispheric low-grade gliomas: conventional and contrast enhanced ultrasonography. Child Nerv Syst 2016;32(10):1907–14. doi: 10.1007/ s00381-016-3186-z.

25. Šteňo A, Karlík M, Mendel P, et al. Navigated three-dimensional intraoperative ultrasound-guided awake resection of low-grade glioma partial­ly infiltrat­­ing optic radiation. Acta Neurochir 2012;154(7):1255–62. doi: 10.1007/ s00701-012-1357-6.

26. Štěňo A, Matějčík V, Štěňo J. Intraoperative ultrasound in low-grade glioma surgery. Clin Neurol Neuro-surg 2015;135:96–9. doi: 10.1016/ j.clineuro.2015.05.012.

27. Štěňo A, Jezberová M, Hol­lý V, et al. Vizualization of lenticulostriate arteries dur­­ing insular low-grade glioma surgeries by navigated 3D ultrasound power Doppler: technical note. J Neurosurg 2016;125(4):1016–23. doi: 10.3171/ 2015.10.jns151907.

28. Prada F, Mattei L, Del Bene M, et al. Intraoperative cerebral glioma characterization with contrast en­hanced ultrasound. Biomed Res Int 2014;2014:484261. doi: 10.1155/ 2014/ 484261.

29. De Lima Oliveira M, Picarel­li H, Menzes MR, et al. Ultrasonography dur­­ing surgery to approach cerebral metastases: ef­fect on Karnofsky index scores and tumor volume. World Neurosurg 2017;103:557–65. doi: 10.1016/ j.wneu.2017.03.087.

30. Tang H, Sun H, Xie L, et al. Intraoperatice ultrasound as­sistance in resection of intracranial meningiomas. Chin J Cancer Res 2013;25(3)339–45. doi: 10.3978/­sn.1000-9604.2013.06.13.

31. Prada F, Del Bene M, Moiraghi A, et al. From gray scale B-mode to elastography: Multimodal ultrasound imag­­ing in meningeoma surgery –  pictorial es­say and literature review. Biomed Res Int 2015;2015: 925729. doi: 10.1155/ 2015/ 925729.

32. Linzer P, Filip M, Šámal F, et al. Sonograficky navigované operace mozkových kavernomů Cesk Slov Neurol N 2013; 76/ 109(2): 203–6.

33. Woydt M, Krone A, Soerensen N, et al. Ultrasound-guided neuronavigation of deep-seated cavernous haemangiomas: clinical results and navigation techniques. Br J Neurosur 2001;15(6):485–95.

34. Heiroth HJ, Etminan N, Steiger HJ, et al. Intraoperative Doppler and Duplex sonography in cerebral aneurysm surgery. Br J Neurosurg 2011;25(5):586–90. doi: 10.3109/ 02688697.2010.534198.

35. Mathiesen T, Peredo I, Edner G, et al. Neuronavigation for arteriovenous malformation surgery by intra­operative three-dimensional ultrasound angiography. Neurosurgery 2007;60(4 Suppl 2):345–50. doi: 10.1227/ 01.NEU.0000255373.57346.EC.

36. Selbekk T, Jakola AS, Solheim O, et al. Ultrasound imag­­ing in neurosurgery: approaches to minimize surgical­ly induced image artefacts for improved resection control. Acta Neurochir 2013;155:973–80. doi: 10.1007/ s00701-013-1647-7.

37. Prada F, Bene MD, Fornaro R, et al. Identification of residual tumor with intraoperative contrast-enhanced ultrasound dur­­ing glioblastoma resection. Neurosurg Focus 2016;40(3):E7. doi: 10.3171/ 2015.11.FOCUS15573.

38. Nimski C, Ganslandt O, Cerny S, et al. Quantification of, visualization of, and compensation for brain shift us­­ing intraoperative magnetic resonance imaging. Neurosurgery 2000;47(5):1079–80.

39. Netuka D, Masopust V, Belšán T, et al. One year experience with 3.0 T intraoperative MRI in pituitary surgery. Acta Neurochir Suppl 2011;109:157–9. doi: 10.1007/ 978-3-211-99651-5_24.

40. Vavruska J, Buhl R, Petridis AK, et al. Evaluation of an intraoperative ultrasound train­­ing model based on a cadaveric sheep brain. Surg Neurol Int 2014;5:46. doi: 10.4103/ 2152–7806.130314.

Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 6

2017 Issue 6

Most read in this issue
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account