Parietal atrophy score on magnetic resonance imaging of the brain in normal­ly ag­­ing people


Authors: D. Šilhán 1;  I. Ibrahim 2;  J. Tintěra 2;  A. Bartoš 1,3
Authors‘ workplace: Neurologická klinika 3. LF UK a FN Královské Vinohrady, Praha 1;  Základna radiodiagnostiky a intervenční radiologie, Institut klinické a experimentální medicíny, Praha 2;  Národní ústav duševního zdraví, Klecany 3
Published in: Cesk Slov Neurol N 2018; 81(4): 414-419
Category: Original Paper
doi: 10.14735/amcsnn2018414

Overview

Aim:
Our intention was to create a simple visual evaluation of parietal atrophy on MRI of the brain useful in identify­­ing neurodegenerative dementias, especial­ly Alzheimer‘s dis­ease. We as­ses­sed the changes of the parietal regions dur­­ing natural aging.

Patients and methods:
We created a new rat­­ing scale that we named the Parietal atrophy score. This method is based on semiquantitativescor­­ing of three structures on coronal slices in the entire parietal lobe: parietal gyri, sulcus cingularis posterior and precuneus. Each structure was rated accord­­ing to the visual clas­sification size as 0 – a normal size without atrophy, 1 – a borderline find­­ing or 2 – a considerable atrophy. These ratings were sum­marized into one score for each hemisphere and then these two were integrated into one score for the entire brain. Us­­ing a visual rat­­ing scale, we clas­sified the parietal regions in 74 elderly subjects with a normal Mini-Mental State Examination score (29 ± 1 point) with a wide range of ages between 48– 87 years.

Results:
Increas­­ing age is as­sociated with a mild progression of the parietal lobe atrophy (r = 0.2; p = 0.05). The over­all score of the parietal tis­sue was not as­sociated with education, gender or hand dominance.

Conclusion:
Our new visual rat­­ing system of parietal atrophy is an easy and fast method for use in clinical practice. Natural ag­­ing is accompanied with negligible parietal atrophic changes.

Key words:
parietal atrophy – magnetic resonance imaging – Alzheimer‘s disease – normal aging – sulcus cingularis posterior – precuneus – parietal gyri

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­ script met the ICMJE “uniform requirements” for biomedical papers


Sources

1. Harper L, Barkhof F, Scheltens P et al. An algorithmic approach to structural imag­­ing in dementia. J Neurol Neurosurg Psychiatry 2014; 85(6): 692– 698. doi: 10.1136/ jn­np-2013-306285.

2. Vemuri P, Jack CR Jr. Role of structural MRI in Alzheimer‘s dis­ease. Alzheimers Res Ther 2010; 31: 2(4): 23. doi: 10.1186/ alzrt47.

3. Mrzílková J, Zach P, Bartoš A et al. Volumetric analysis of the pons, cerebel­lum and hippocampi in patients with Alzheimer‘s dis­ease. Dement Geriatr CognDisord 2012; 34(3– 4): 224– 234. doi: 10.1159/ 000343445.

4. Scheltens P, Leys D, Barkhof F et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s dis­ease and normal ageing: dia­gnostic value and neuropsychological cor­relates. J Neurol Neurosurg Psychiatry 1992; 55(10): 967– 972.

5. Koedam EL, Lehman M, van der Flier WM et al. Visual as­ses­sment of posterior atrophy development of a MRI rat­­ing scale. Eur Radiol 2011; 21(12): 2618– 2625. doi: 10.1007/ s00330-011-2205-4.

6. Bartoš A, Zach P, Diblíková F et al. Vizuální kategorizace mediotemporální atrofie na MR mozku u Alzheimerovy nemoci. Psychiatrie 2007; 11 (Suppl 3): 49– 52.

7. Rathakrishnan BG, Doraiswamy PM, Petrel­la JR et al. Science to practice: translat­­ing automated brain MRI volumetry in Alzheimer’s Dis­ease from research to routine dia­gnostic use in the work-up of dementia. Front Neurol 2014; 4: 216. doi: 10.3389/ fneur.2013.00216.

8. Scheltens P, Pasquier F, Weerts JG et al. Qualitative as­ses­sment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Eur Neurol 1997; 37(2): 95– 99. doi: 10.1159/ 000117417.

9. Liu Y, Paajanen T, Zhang Y et al. Analysis of regional MRI volumes and thicknes­ses as predictors of conversion from mild cognitive impairment to Alzheimer‘s dis­ease. Neurobio­l Ag­­ing 2010; 31(8): 1375– 1385. doi: 10.1016/ j.neurobio­laging.2010.01.022.

10. Fen­nema-Notestine C, McEvoy LK, Hagler DJ Jr et al. The Alzheimer‘s Dis­ease Neuroimag­­ing Initiative: structural neuroimag­­ing in the detection and prognosis of pre-clinical and early AD. Behav Neurol 2009; 21(1): 3– 12. doi: 10.3233/ BEN-2009-0230.

11. Jack CR, Shiung MM, Gunter JL et al. Comparison of dif­ferent MRI brain atrophy rate measures with clinical dis­ease progres­sion in AD. Neurology 2004; 24: 62(4): 591– 600.

12. van de Pol LA, Hensel A, van der Flier WM et al. Hip­-pocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s dis­ease. J Neurol Neurosurg Psychiatry 2006; 77(4): 439– 442. doi: 10.1136/ jn­np.2005.075341.

13. Frisoni GB, Pievani M, Testa C et al. The topography of grey matter involvement in early and late onset Alzheimer‘s dis­ease. Brain 2007; 130(3): 720– 730. doi: 10.1093/ brain/ awl377.

14. Galton CJ, Patterson K, Xuereb JH et al. Atypical and typical presentations of Alzheimer‘s dis­ease: a clinical, neuropsychological, neuroimag­­ing and pathological study of 13 cases. Brain 2000; 123(3): 484– 498.

15. Frisoni GB, Testa C, Sabattoli F et al. Structural cor­relates of early and late onset Alzheimer’s dis­ease: voxel based morphometric study. J Neurol Neurosurg Psychiatry 2005; 76(1): 112– 114.

16. Hu WT, Wang Z, Lee VM et al. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 2010; 75(10): 881– 888. doi: 10.1212/ WNL.0b013e3181f11e35.

17. Landau SM, Harvey D, Madison CM et al. As­sociations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobio­l Ag­­ing 2011; 32(7): 1207– 1218. doi: 10.1016/ j.neurobio­laging.2009.07.002.

18. Lehmann M, Koedam EL, Barnes J et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathological­ly-confirmed Alzheimer’s dis­ease. Neurobio­l Ag­­ing 2012; 33(3): 627.e1– 627.e12. doi: 10.1016/ j.neurobio­laging.2011.04.003.

19. Folstein MF, Folstein SE, McHugh PR. „Mini-mental state“. A practical method for grad­­ing the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189– 198.

20. Bartoš A, Raisová M. The Mini-Mental State Examination: Czech norms and cutof­fs for mild dementia and mild cognitive impairment due to Alzheimer‘s dis­ease. Dement Geriatr Cogn Disord 2016; 42(1– 2): 50– 57. doi: 10.1159/ 000446426.

21. Bartoš A, Raisová M. Testy a dotazníky pro vyšetřování kognitivních funkcí, nálady a soběstačnosti. Praha: Mladá fronta 2015.

22. Bartoš A, Orlíková H, Raisová M et al. Česká tréninková verze Montrealského kognitivního testu (MoCA-CZ1) k časné detekci Alzheimerovy nemoci. Cesk Slov Neurol N 2014; 77/ 110(5): 587– 594.

23. Bartoš A. Netestuj, ale POBAV –  písemné záměrné Pojmenování OBrázků A jejich Vybavení jako krátká kognitivní zkouška. Cesk Slov Neurol N 2016; 79/ 112(6): 671– 679.

24. Bartoš A. Test gest (TEGEST) k rychlému vyšetření epizodické paměti u mírné kognitivní poruchy. Cesk Slov Neurol N 2018; 81/ 114(1): 37– 44. doi: 10.14735/ amcsn­n201837.

25. Fjell AM, Walhovd KB, Fen­nema-Notestine C et al. One year brain atrophy evident in healthy aging. J Neurosci 2009; 29(48): 15223– 15231. doi: 10.1523/ JNEUROSCI.3252-09.2009.

26. Peters R. Age­­ing and the brain. Postgrad Med J 2006; 82(964): 84– 88. doi: 10.1136/ pgmj.2005.036665.

27. Ishii K, Kawachi T, Sasaki H et al. Voxel-based morphometric comparison between early- and late-onset mild Alzheimer‘s dis­ease and as­ses­sment of dia­gnostic performance of Z score images. AJNR Am J Neuroradiol 2005; 26(2): 333– 340.

28. Shiino A, Watanabe T, Kitagawa T et al. Dif­ferent atrophic patterns in early- and late-onset Alzheimer‘s dis­ease and evaluation of clinical utility of a method of regional z-score analysis us­­ing voxel-based morphomet­­ry. Dement Geriatr Cogn Disord 2008; 26(2): 175– 186. doi: 10.1159/ 000151241.

29. Galton CJ, Patterson K, Graham K et al. Dif­fer­­ing patterns of temporal atrophy in Alzheimer‘s dis­ease and semantic dementia. Neurology 2001; 57(2): 216– 225.

30. Mesulam MM. Primary progres­sive aphasia. Ann Neurol 2001; 49(4): 425– 432.

31. Thompson SA, Patterson K, Hodges JR. Left/ right asym­metry of atrophy in semantic dementia: Behavioral-cognitive implications. Neurology 2003; 61(9): 1196– 1203.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 4

2018 Issue 4

Most read in this issue
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account