Parietal atrophy score on magnetic resonance imaging of the brain in normal­ly ag­­ing people


Authors: D. Šilhán 1;  I. Ibrahim 2;  J. Tintěra 2;  A. Bartoš 1,3
Authors‘ workplace: Neurologická klinika 3. LF UK a FN Královské Vinohrady, Praha 1;  Základna radiodiagnostiky a intervenční radiologie, Institut klinické a experimentální medicíny, Praha 2;  Národní ústav duševního zdraví, Klecany 3
Published in: Cesk Slov Neurol N 2018; 81(4): 414-419
Category: Original Paper
doi: https://doi.org/10.14735/amcsnn2018414

Overview

Aim:
Our intention was to create a simple visual evaluation of parietal atrophy on MRI of the brain useful in identify­­ing neurodegenerative dementias, especial­ly Alzheimer‘s dis­ease. We as­ses­sed the changes of the parietal regions dur­­ing natural aging.

Patients and methods:
We created a new rat­­ing scale that we named the Parietal atrophy score. This method is based on semiquantitativescor­­ing of three structures on coronal slices in the entire parietal lobe: parietal gyri, sulcus cingularis posterior and precuneus. Each structure was rated accord­­ing to the visual clas­sification size as 0 – a normal size without atrophy, 1 – a borderline find­­ing or 2 – a considerable atrophy. These ratings were sum­marized into one score for each hemisphere and then these two were integrated into one score for the entire brain. Us­­ing a visual rat­­ing scale, we clas­sified the parietal regions in 74 elderly subjects with a normal Mini-Mental State Examination score (29 ± 1 point) with a wide range of ages between 48– 87 years.

Results:
Increas­­ing age is as­sociated with a mild progression of the parietal lobe atrophy (r = 0.2; p = 0.05). The over­all score of the parietal tis­sue was not as­sociated with education, gender or hand dominance.

Conclusion:
Our new visual rat­­ing system of parietal atrophy is an easy and fast method for use in clinical practice. Natural ag­­ing is accompanied with negligible parietal atrophic changes.

Key words:
parietal atrophy – magnetic resonance imaging – Alzheimer‘s disease – normal aging – sulcus cingularis posterior – precuneus – parietal gyri

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­ script met the ICMJE “uniform requirements” for biomedical papers


Sources

1. Harper L, Barkhof F, Scheltens P et al. An algorithmic approach to structural imag­­ing in dementia. J Neurol Neurosurg Psychiatry 2014; 85(6): 692– 698. doi: 10.1136/ jn­np-2013-306285.

2. Vemuri P, Jack CR Jr. Role of structural MRI in Alzheimer‘s dis­ease. Alzheimers Res Ther 2010; 31: 2(4): 23. doi: 10.1186/ alzrt47.

3. Mrzílková J, Zach P, Bartoš A et al. Volumetric analysis of the pons, cerebel­lum and hippocampi in patients with Alzheimer‘s dis­ease. Dement Geriatr CognDisord 2012; 34(3– 4): 224– 234. doi: 10.1159/ 000343445.

4. Scheltens P, Leys D, Barkhof F et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s dis­ease and normal ageing: dia­gnostic value and neuropsychological cor­relates. J Neurol Neurosurg Psychiatry 1992; 55(10): 967– 972.

5. Koedam EL, Lehman M, van der Flier WM et al. Visual as­ses­sment of posterior atrophy development of a MRI rat­­ing scale. Eur Radiol 2011; 21(12): 2618– 2625. doi: 10.1007/ s00330-011-2205-4.

6. Bartoš A, Zach P, Diblíková F et al. Vizuální kategorizace mediotemporální atrofie na MR mozku u Alzheimerovy nemoci. Psychiatrie 2007; 11 (Suppl 3): 49– 52.

7. Rathakrishnan BG, Doraiswamy PM, Petrel­la JR et al. Science to practice: translat­­ing automated brain MRI volumetry in Alzheimer’s Dis­ease from research to routine dia­gnostic use in the work-up of dementia. Front Neurol 2014; 4: 216. doi: 10.3389/ fneur.2013.00216.

8. Scheltens P, Pasquier F, Weerts JG et al. Qualitative as­ses­sment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Eur Neurol 1997; 37(2): 95– 99. doi: 10.1159/ 000117417.

9. Liu Y, Paajanen T, Zhang Y et al. Analysis of regional MRI volumes and thicknes­ses as predictors of conversion from mild cognitive impairment to Alzheimer‘s dis­ease. Neurobio­l Ag­­ing 2010; 31(8): 1375– 1385. doi: 10.1016/ j.neurobio­laging.2010.01.022.

10. Fen­nema-Notestine C, McEvoy LK, Hagler DJ Jr et al. The Alzheimer‘s Dis­ease Neuroimag­­ing Initiative: structural neuroimag­­ing in the detection and prognosis of pre-clinical and early AD. Behav Neurol 2009; 21(1): 3– 12. doi: 10.3233/ BEN-2009-0230.

11. Jack CR, Shiung MM, Gunter JL et al. Comparison of dif­ferent MRI brain atrophy rate measures with clinical dis­ease progres­sion in AD. Neurology 2004; 24: 62(4): 591– 600.

12. van de Pol LA, Hensel A, van der Flier WM et al. Hip­-pocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s dis­ease. J Neurol Neurosurg Psychiatry 2006; 77(4): 439– 442. doi: 10.1136/ jn­np.2005.075341.

13. Frisoni GB, Pievani M, Testa C et al. The topography of grey matter involvement in early and late onset Alzheimer‘s dis­ease. Brain 2007; 130(3): 720– 730. doi: 10.1093/ brain/ awl377.

14. Galton CJ, Patterson K, Xuereb JH et al. Atypical and typical presentations of Alzheimer‘s dis­ease: a clinical, neuropsychological, neuroimag­­ing and pathological study of 13 cases. Brain 2000; 123(3): 484– 498.

15. Frisoni GB, Testa C, Sabattoli F et al. Structural cor­relates of early and late onset Alzheimer’s dis­ease: voxel based morphometric study. J Neurol Neurosurg Psychiatry 2005; 76(1): 112– 114.

16. Hu WT, Wang Z, Lee VM et al. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 2010; 75(10): 881– 888. doi: 10.1212/ WNL.0b013e3181f11e35.

17. Landau SM, Harvey D, Madison CM et al. As­sociations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobio­l Ag­­ing 2011; 32(7): 1207– 1218. doi: 10.1016/ j.neurobio­laging.2009.07.002.

18. Lehmann M, Koedam EL, Barnes J et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathological­ly-confirmed Alzheimer’s dis­ease. Neurobio­l Ag­­ing 2012; 33(3): 627.e1– 627.e12. doi: 10.1016/ j.neurobio­laging.2011.04.003.

19. Folstein MF, Folstein SE, McHugh PR. „Mini-mental state“. A practical method for grad­­ing the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189– 198.

20. Bartoš A, Raisová M. The Mini-Mental State Examination: Czech norms and cutof­fs for mild dementia and mild cognitive impairment due to Alzheimer‘s dis­ease. Dement Geriatr Cogn Disord 2016; 42(1– 2): 50– 57. doi: 10.1159/ 000446426.

21. Bartoš A, Raisová M. Testy a dotazníky pro vyšetřování kognitivních funkcí, nálady a soběstačnosti. Praha: Mladá fronta 2015.

22. Bartoš A, Orlíková H, Raisová M et al. Česká tréninková verze Montrealského kognitivního testu (MoCA-CZ1) k časné detekci Alzheimerovy nemoci. Cesk Slov Neurol N 2014; 77/ 110(5): 587– 594.

23. Bartoš A. Netestuj, ale POBAV –  písemné záměrné Pojmenování OBrázků A jejich Vybavení jako krátká kognitivní zkouška. Cesk Slov Neurol N 2016; 79/ 112(6): 671– 679.

24. Bartoš A. Test gest (TEGEST) k rychlému vyšetření epizodické paměti u mírné kognitivní poruchy. Cesk Slov Neurol N 2018; 81/ 114(1): 37– 44. doi: 10.14735/ amcsn­n201837.

25. Fjell AM, Walhovd KB, Fen­nema-Notestine C et al. One year brain atrophy evident in healthy aging. J Neurosci 2009; 29(48): 15223– 15231. doi: 10.1523/ JNEUROSCI.3252-09.2009.

26. Peters R. Age­­ing and the brain. Postgrad Med J 2006; 82(964): 84– 88. doi: 10.1136/ pgmj.2005.036665.

27. Ishii K, Kawachi T, Sasaki H et al. Voxel-based morphometric comparison between early- and late-onset mild Alzheimer‘s dis­ease and as­ses­sment of dia­gnostic performance of Z score images. AJNR Am J Neuroradiol 2005; 26(2): 333– 340.

28. Shiino A, Watanabe T, Kitagawa T et al. Dif­ferent atrophic patterns in early- and late-onset Alzheimer‘s dis­ease and evaluation of clinical utility of a method of regional z-score analysis us­­ing voxel-based morphomet­­ry. Dement Geriatr Cogn Disord 2008; 26(2): 175– 186. doi: 10.1159/ 000151241.

29. Galton CJ, Patterson K, Graham K et al. Dif­fer­­ing patterns of temporal atrophy in Alzheimer‘s dis­ease and semantic dementia. Neurology 2001; 57(2): 216– 225.

30. Mesulam MM. Primary progres­sive aphasia. Ann Neurol 2001; 49(4): 425– 432.

31. Thompson SA, Patterson K, Hodges JR. Left/ right asym­metry of atrophy in semantic dementia: Behavioral-cognitive implications. Neurology 2003; 61(9): 1196– 1203.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 4

2018 Issue 4

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account