Pos­sibilities of regulation of neuroim­mune and neuroendocrine proces­ses us­­ing physiother­apy

Authors: G. Angelová 1;  M. Bičíková 2;  L. Kolátorová 2;  P. Kučera 3;  M. Grünerová Lippertová 1;  K. Řasová 1
Authors‘ workplace: Klinika rehabilitačního lékařství, 3. LF UK a FNKV v Praze 1;  Oddělení steroidů a proteofaktorů, Endokrinologický ústav v Praze 2;  Ústav imunologie, 3. LF UK v Praze 3
Published in: Cesk Slov Neurol N 2018; 81(4): 410-413
Category: Review Article
doi: 10.14735/amcsnn2018410


The article provides an overview of the potential pos­sibilities of physiother­apy to interfere with the neuroendocrineim­mune system in patients with MS. Article describes the principles used in physiother­apy to start adaptation proces­ses of the im­mune and endocrine system.

Key words:
physiotherapy – hypothalamic-pituitary-adrenal axis – dehydroepiandrosterone – multiple sclerosis – long term potentiation – physical stress

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­ script met the ICMJE “uniform requirements” for biomedical papers


1. Di Filippo M, Sarchiel­li P, Picconi B et al. Neuroinflam­mation and synaptic plasticity: theoretical basis for a novel im­mune-centred therapeutic approach to neurological disorders. Trends Pharmacol Sci 2008; 29(8): 402–412. doi: 10.1016/j.tips.2008.06.005.

2. Heesen C, Gold SM, Hartmann S et al. Endocrine and cytokine responses to standardized physical stress in multiple sclerosis. Brain Behav Im­mun 2003; 17(6): 473–481.

3. Schulz KH, Gold SM, Witte J et al. Impact of aerobic train­­ing on im­mune-endocrine parameters neurotrophic factors quality of life and coordinative function in multiple sclerosis. J Neurol Sci 2004; 225(1–2): 11–18. doi: 10.1016/j.jns.2004.06.009.

4. Castel­lano V, Patel DI, White LJ. Cytokine responses to acute and chronic exercise in multiple sclerosis. J Appl Physiol (1985) 2008; 104(6): 1697–1702. doi: 10.1152/japplphysiol.00954.2007.

5. Rasova K, Dolezil D, Kalistova H et al. Physiother­apy as an im­munoactive ther­apy? A pilot study. Neuro Endocrinology Lett 2012; 33(1): 67–75.

6. Hof­fman-Goetz L, Pedersen BK. Exercise and the im­mune system: a model of the stress response? Im­munol Today 1994; 15(8): 382–387. doi: 10.1016/0167-5699(94)90177-5.

7. Walsh N, Gleeson M, Shephard RJ et al. Position statement. Part one: im­mune function and exercise. Exerc Im­munol Rev 2011; 17: 6–63.

8. Brines R, Hof­fman-Goetz L, Pedersen BK. Can you exercise to make your im­mune system fitter? Im­munol Today 1996; 17(6): 252–254.

9. Kern S, Ziems­sen T. Brain-im­mune com­munication psychoneuroim­munology of multiple sclerosis. Mult Scler 2008; 14(1): 6–21. doi: 10.1177/1352458507079657.

10. White LJ, Castel­lano V. Exercise and brain health – implications for multiple sclerosis: Part II – im­mune factors and stress hormones. Sports Med 2008; 38(3): 179–186.

11. Stef­ferl A, Linington C, Holsboer F et al. Susceptibility and resistance to experimental al­lergic encephalomyelitis: relationship with hypothalamic-pituitary-adrenocortical axis responsiveness in the rat. Endocrinology 1999; 140(11): 4932–4938. doi: 10.1210/endo.140.11.7109.

12. Heesen C, Schulz H, Schmidt M et al. Endocrine and cytokine responses to acute psychological stress in multiple sclerosis. Brain Behav Im­mun 2002; 16(3): 282–287. doi: 10.1006/brbi.2001.0628.

13. White LJ, Castel­lano V. Exercise and brain health – implications for multiple sclerosis: Part 1 – neuronal growth factors. Sports Med 2008; 38(2): 91–100.

14. Gold SM, Schulz KH, Hartmann S et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroim­munol 2003; 138(1–2): 99–105.

15. Boldyrev AA, Carpenter DO, Johnson P. Emerg­­ing evidence for a similar role of glutamate receptors in the nervous and im­mune systems. J Neurochem 2005; 95(4): 913–918. doi: 10.1111/j.1471-4159.2005.03456.x.

16. Onat F, Cavdar S. Cerebel­lar con­nections: hypo­thalamus. Cerebel­lum 2003; 2(4): 263–269. doi: 10.1080/ 14734220310016187.

17. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002; 25(6): 295–301.

18. Zhu JN, Yung WH, Kwok-Chong Chow B et al. The cerebel­lar-hypothalamic circuits: potential pathways underly­­ing cerebel­lar involvement in somatic-visceral integration. Brain Res Rev 2006; 52(1): 93–106. doi: 10.1016/j.brainresrev.2006.01.003.

19. Molinari M, Filippini V, Leggio MG. Neuronal plasticity of inter­related cerebel­lar and cortical networks. Neuro­science 2002; 111(4): 863–870.

20. Bicikova M, Tal­lová J, Hill M et al. Serum concentrations of some neuroactive steroids in women suf­fer­­ing from mixed anxiety-depres­sive disorder. Neurochem Res 2000; 25(12): 1623–1627.

21. Daoudal G, Deban­ne D. Long-term plasticity of intrinsic excitability: learn­­ing rules and mechanisms. Learn Mem 2003; 10(6): 456–465. doi: 10.1101/lm.64103.

22. Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain 2006; 129(7): 1659–1673. doi: 10.1093/brain/awl082.

23. Hampl R, Hill M, Stárka L. DHEA metabolites dur­­ing the life span. In: Morfin R (ed). DHEA and the brain. London and New York: Taylor & Francis 2002.

24. El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and bio­logical­ly active oxygenated metabolites of DHEA and epiandrosterone (EpiA)-recent reports. Steroids 2012; 77(1–2): 10–26. doi: 10.1016/j.steroids.2011.09.008.

25. Tel­lez N, Comabel­la M, Julià E et al. Fatigue in progres­sive multiple sclerosis is as­sociated with low levels of dehydroepiandrosterone. Mult Scler 2006; 12(4): 487–494. doi: 10.1191/135248505ms1322oa.

26. Bains JS, Oliet SH. Glia: they make your memories stick! Trends Neurosci 2007; 30(8): 417–424. doi: 10.1016/j.tins.2007.06.007.

27. Baulieu E, Schumacher M. Progesterone as a neuroactive neurosteroid with special reference to the ef­fect of progesterone on myelination. Steroids 2000; 65(10–11): 605–612.

28. Stárka L, Dušková M, Hill M. Dehydroepiandroster­one: a neuroactive steroid. J Steroid Biochem Mol Biol 2015; 145: 254–260. doi: 10.1016/j.jsbmb.2014.03.008.

29. Corpéchot C, Robel P, Axelson M et al. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci U S A 1981; 78(8): 4704–4707.

30. Li A, Bigelow JC. The 7-hydroxylation of dehydroepiandrosterone in rat brain. Steroids 2010; 75(6): 404–410. doi: 10.1016/j.steroids.2010.02.003.

31. Kümpfel T, Then Bergh F, Friess E et al. Dehydroepiandrosterone response to the adrenocorticotropin test and the combined dexamethasone and corticotropin-releas­­ing hormone test in patients with multiple sclerosis. Neuroendocrinology 1999; 70(6): 431–438. doi: 10.1159/000054505.

32. Doostzadeh J, Cotil­lon AC, Benalychérif A et al. Inhibition studies of dehydroepiandrosterone 7α- and 7β-hydroxylation in mouse liver microsomes. Steroids 1998; 63(11): 608–614.

33. Doostzadeh J, Morfin R. Studies of the enzyme complex responsible for pregnenolone and dehydroepiandrosterone 7α-hydroxylation in mouse tis­sues. Steroids 1996; 61(10): 613–620.

34. Akwa Y, Morfin R, Robel P et al. Neurosteroid metabolism. 7 alpha-Hydroxylation of dehydroepiandroster­one and pregnenolone by rat brain microsomes. Biochem J 1992; 288(3): 959–964.

35. Morfin R, Lafaye P, Cotil­lon AC et al. 7a-Hydroxy-Dehydroepiandrosterone and Im­mune Response. Ann NY Acad Sci 2000; 917: 971–982.

36. Hampl R, Hill M, Sterzl I et al. Im­munomodulatory 7-hydroxylated metabolites of dehydroepiandrosterone are present in human semen. J Steroid Biochem Mol Biol 2000; 75: 273–276.

37. Pelis­sier MA, Trap C, Malewiak MI et al. Antioxidant ef­fects of dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat colon intestine and liver. Steroids 2004; 69(2): 137–144. doi: 10.1016/j.steroids.2003.12.006.

38. Akwa Y, Young J, Kabbadj K et al. Neurosteroids: bio­synthesis metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem Mol Biol 1991; 40(1–3): 71–81.

39. Jel­linck H, Croft G, McEwen BS et al. Metabolism of dehydroepiandrosterone by rodent brain cell lines: Relationship between 7-hydroxylation and aromatization. J Steroid Biochem Mol Biol 2005; 93(1): 81–86. doi: 10.1016/j.jsbmb.2004.11.008.

40. Bicikova M, Ripová D, Hill M et al. Plasma levels of 7-hydroxylated dehydroepiandrosterone (DHEA) metabolites and selected amino-thiols as discriminatory tools of Alzheimer‘s dis­ease and vascular dementia. Clin Chem Lab Med 2004; 42(5): 518–524. doi: 10.1515/CCLM.2004.088.

41. Morfin R, Stárka L. Neurosteroid 7-hydroxylation products in the brain. Int Rev Neurobio­l 2001; 46: 79–95.

42. Friess E, Schif­felholz T, Steckler T et al. Dehydroepiandrosterone – a neurosteroid. Eur J Clin Invest 2000; 30 (Suppl 3): 46–50.

43. Al­lolio B, Arlt W. DHEA treatment: myth or reality? Trends Endocrinol Metab 2002; 13(7): 288–294.

44. Schumacher M, Weil­l-Engerer S, Liere P et al. Steroid hormones and neurosteroids in normal and pathological ag­­ing of the nervous system. Prog Neurobio­l 2003; 71(1): 3–29.

45. Jandova D, Bicikova M, Hill M et al. Health resort treatment improved the neurosteroid profile in thyroidectomized women. Endocr Regul 2008; 42(1): 17–22.

46. Jandová D, Bičíková M, Čeřovská I et al. Hormonální změny u thyreoidektomovaných žen v rámci následné rehabilitační léčby. Rehabil Fyz Lék 2006; 13(1): 7–15.

Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 4

2018 Issue 4

Most read in this issue
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account