A comparison of mini-invasive percutaneous versus clas­sic open pedicle screw fixation of thoracolumbar fractures –  retrospective analysis


Authors: P. Krupa;  M. Bartoš;  T. Česák;  V. Málek;  T. Hosszú
Authors‘ workplace: Neurochirurgická klinika LF UK a FN Hradec Králové
Published in: Cesk Slov Neurol N 2018; 81(6): 678-685
Category: Original Paper
doi: 10.14735/amcsnn2018678

Overview

Aims:

Evaluation of pedicular screw insertion precision, Cobb’s angle, vertebral body angulation (VBA), vertebral body index (VBI), duration of surgery and X-ray exposure time in clas­sic open and mini-invasive percutaneous stabilisation of traumatic vertebral fractures of the middle and lower thoracic and lumbar spine.

Patients and methods:

Retrospective analysis of patients who suf­fered from traumatic vertebral fractures of the middle and lower thoracic and lumbar spine. Patients were operated on by clas­sic open posterior stabilisation (OPEN group) or by mini-invasive percutaneous posterior stabilisation (MIS group) with insertion of pedicular screws. In this study, patients with traumatic T8–L5 vertebral fracture(s) who had postoperative CT scans dur­­ing January 1 2015–January 1 2018 were included. Pedicular screw position was evaluated on axial planes of the postoperative CT scan and clas­sified us­­ing the modified Gertzbein’s grad­­ing scale. Furthermore, parameters of the kyphosis (Cobb’s angle, VBA and VBI) of the involved region were calculated and compared pre- and postoperatively. Final­ly, us­­ing patients’ charts the duration of surgery and X-ray exposure time and Kerma-Area Product were compared.

Results:

Dur­­ing 2015–2018, a total of 147 patients were included in the study. The MIS group had 47 patients, and the OPEN group had 100 patients. Cor­rect pedicular screw position was achieved in 93.1% in the MIS group and in 94.4% in the OPEN group. We found no significant dif­ference in Cobb’s angle, VBI and VBA between the groups. Duration of surgery was significantly shorter in the MIS group – 91 vs. 103 min. X-ray exposure time was significantly longer in the MIS group – 45 vs. 33 s. We had a 2% infection rate in the OPEN group, but we did not record any such complications in the MIS group.

Conclusions:

The total number of pedicular screw malpositions in our study did not dif­fer significantly between the groups. We registered a higher number of grade 3A pedicular screw malpositions (medial pedicle breach > 4m­m) accord­­ing to the modified Gertzbein’s grad­­ing scale lead­­ing to a higher number of reoperations in the MIS group. However, this was likely due to learn­­ing curve is­sues. In the OPEN group, the duration of surgery was significantly longer in the OPEN group; on the other hand, X-ray exposure time was significantly shorter. There were no infectious complications in the MIS group.

Key words:

open stabilisation – mini-invasive percutaneous stabilisation – traumatic vertebral fractures – pedicular screw – X-ray exposure time

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.


Chinese summary - 摘要

王莹莹 - 微创经皮与经典开胸椎弓根螺钉内固定治疗胸腰椎骨折的比较 - 回顾性分析

目的:

评估椎弓根螺钉插入精度,Cobb角,椎体角度(VBA),椎体指数(VBI),手术持续时间和X射线暴露时间的经典开放和微创经皮稳定创伤性椎体骨折的中间和 下胸椎和腰椎。

患者和方法:

回顾性分析中下胸椎和腰椎创伤性椎体骨折患者的临床资料。 患者通过经典开放后路稳定(OPEN组)或通过微创经皮后路稳定(MIS组)和椎弓根螺钉插入进行手术。 在本研究中,包括在2015年1月1日至2018年1月1日期间进行了术后CT扫描的创伤性T8-L5椎体骨折患者。 在术后CT扫描的轴平面上评估椎弓根螺钉位置,并使用改良的Gertzbein分级量表进行分类。 此外,计算并在术前和术后比较所涉及区域的脊柱后凸参数(Cobb角,VBA和VBI)。 最后,使用患者的图表,比较手术持续时间和X射线暴露时间和Kerma-区域产品。

结果:

在2015年至2018年期间,共有147名患者参与了该研究。 MIS组有47名患者,OPEN组有100名患者。 MIS组的椎弓根螺钉位置正确率为93.1%,OPEN组为94.4%。 我们发现各组之间的Cobb角,VBI和VBA没有显著差异。 MIS组的手术时间明显缩短 - 91对103分钟。 MIS组的X射线暴露时间明显更长--45对33秒。 我们在OPEN组中感染率为2%,但我们没有在MIS组中记录任何此类并发症。

结论:

在我们的研究中,椎弓根螺钉错位的总数在各组之间没有显著差异。 我们根据改良的Gertzbein分级量表登记了更高数量的3A级椎弓根螺钉错位(内侧椎弓根缺损> 4 mm),导致MIS组的再次手术次数增加。 然而,这可能是由于学习曲线问题。 在OPEN组,OPEN组的手术时间明显延长; 另一方面,X射线曝光时间明显缩短。 MIS组没有感染性并发症。

关键词:

开放式稳定 - 微创经皮稳定 - 创伤性椎骨骨折 - 椎弓根螺钉 - X射线暴露时间


Sources

1. Hu R, Mustard CA, Burns C. Epidemiology of incident spinal fracture in a complete population. Spine (Phila Pa 1976) 1996; 21(4): 492–499.

2. Gertzbein SD. Spine update. Clas­sification of thoracic and lumbar fractures. Spine (Phila Pa 1976) 1994; 19(5): 626–628.

3. Magerl F, Aebi M, Gertzbein SD et al. A comprehensive clas­sification of thoracic and lumbar injuries. Eur Spine J 1994; 3(4): 184–201.

4. Ghobrial GM, Jallo J. Thoracolumbar spine trauma: review of the evidence. J Neurosurg Sci 2013; 57(2): 115–122.

5. Denis F. The three column spine and its significance in the clas­sification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 1983; 8(8): 817–831.

6. Wood KB, Khan­na G, Vaccaro AR et al. As­ses­sment of two thoracolumbar fracture clas­sification systems as used by multiple surgeons. J Bone Joint Surg Am 2005; 87(7): 1423–1429.

7. Reinhold M, Audige L, Schnake KJ et al. AO spine injury clas­sification system: a revision proposal for the thoracic and lumbar spine. Eur Spine J 2013; 22(10): 2184–2201. doi: 10.1007/s00586-013-2738-0.

8. Vaccaro AR, Oner C, Kepler CK et al. AOSpine thoracolumbar spine injury clas­sification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976) 2013; 38(23): 2028–2037. doi: 10.1097/BRS.0b013e3182a8a381.

9. Denis F, Armstrong GW, Searls K et al. Acute thoracolumbar burst fractures in the absence of neurologic deficit. A comparison between operative and nonoperative treatment. Clin Orthop Relat Res 1984; (189): 142–149.

10. Wood K, Buttermann G, Mehbod A et al. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am 2003; 85-A(5): 773–781.

11. Mumford J, Weinstein JN, Spratt KF et al. Thoracolumbar burst fractures. The clinical ef­ficacy and outcome of nonoperative management. Spine (Phila Pa 1976) 1993; 18(8): 955–970.

12. Shen WJ, Shen YS. Nonsurgical treatment of three-column thoracolumbar junction burst fractures without neurologic deficit. Spine (Phila Pa 1976) 1999; 24(4): 412–415.

13. Shen WJ, Liu TJ, Shen YS. Nonoperative treatment versus posterior fixation for thoracolumbar junction burst fractures without neurologic deficit. Spine (Phila Pa 1976) 2001; 26(9): 1038–1045.

14. Kim KT, Lee SH, Suk KS et al. The quantitative analysis of tis­sue injury markers after mini-open lumbar fusion. Spine (Phila Pa 1976) 2006; 31(6): 712–716.

15. Wiltse LL, Bateman JG, Hutchinson RH et al. The paraspinal sacrospinalis-splitt­­ing approach to the lumbar spine. J Bone Joint Surg Am 1968; 50(5): 919–926.

16. Pang W, Zhang GL, Tian W et al. Surgical treatment of thoracolumbar fracture through an approach via the paravertebral muscle. Orthop Surg 2009; 1(3): 184–188. doi: 10.1111/j.1757-7861.2009.00032.x.

17. Gejo R, Matsui H, Kawaguchi Y et al. Serial changes in trunk muscle performance after posterior lumbar surgery. Spine (Phila Pa 1976) 1999; 24(10): 1023–1028.

18. Lehmann W, Ushmaev A, Ruecker A et al. Comparison of open versus percutaneous pedicle screw insertion in a sheep model. Eur Spine J 2008; 17(6): 857–863. doi: 10.1007/s00586-008-0652-7.

19. Grass R, Biewener A, Dickopf A et al. Percutaneous dorsal versus open instrumentation for fractures of the thoracolumbar border. A comparative, prospective study. Unfal­lchirurg 2006; 109(4): 297–305. doi: 10.1007/s00113-005-1037-6.

20. Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res 1984; (189): 125–141.

21. As­saker R. Minimal access spinal technologies: state-of-the-art, indications, and techniques. Joint Bone Spine 2004; 71(6): 459–469. doi: 10.1016/j.jbspin.2004.08.006.

22. Palmisani M, Gasbar­rini A, Brodano GB et al. Minimal­ly invasive percutaneous fixation in the treatment of thoracic and lumbar spine fractures. Eur Spine J 2009; 18 (Suppl 1): 71–74. doi: 10.1007/s00586-009-0989-6.

23. Rampersaud YR, Foley KT, Shen AC et al. Radiation exposure to the spine surgeon dur­­ing fluoroscopical­ly as­sisted pedicle screw insertion. Spine (Phila Pa 1976) 2000; 25(20): 2637–2645.

24. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 1990; 15(1): 11–14.

25. Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy us­­ing O-arm, robotic guidance or freehand technique: a comparative study. Spine (Phila Pa 1976) 2018; 43(6): E373–E378. doi: 10.1097/BRS.0000000000002449.

26. McAnany SJ, Overley SC, Kim JS et al. Open versus minimal­ly invasive fixation techniques for thoracolumbar trauma: a meta-analysis. Global Spine J 2016; 6(2): 186–194. doi: 10.1055/s-0035-1554777.

27. Phan K, Rao PJ, Mobbs RJ. Percutaneous versus open pedicle screw fixation for treatment of thoracolumbar fractures: systematic review and meta-analysis of comparative studies. Clin Neurol Neurosurg 2015; 135: 85–92.

28. Vanek P, Bradac O, Konopkova R et al. Treatment of thoracolumbar trauma by short-segment percutaneous transpedicular screw instrumentation: prospective comparative study with a minimum 2-year fol­low-up. J Neurosurg Spine 2014; 20(2): 150–156. doi: 10.3171/2013.11.SPINE13479.

29. Sun XY, Zhang XN, Hai Y. Percutaneous versus traditional and paraspinal posterior open approaches for treatment of thoracolumbar fractures without neurologic deficit: a meta-analysis. Eur Spine J 2017; 26(5): 1418–1431. doi: 10.1007/s00586-016-4818-4.

30. Pishnamaz M, Oikonomidis S, Knobe M et al. Open versus percutaneous stabilization of thoracolumbar spine fractures: a short-term functional and radiological fol­low-up. Acta Chir Orthop Traumatol Cech 2015; 82(4): 274–281.

31. Ringel F, Stof­fel M, Stuer C et al. Minimal­ly invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery 2006; 59 (4 Suppl 2): ONS361-ONS366. doi: 10.1227/01.NEU.0000223505.07815.74.

32. Dahdaleh NS, Smith ZA, Hitchon PW. Percutaneous pedicle screw fixation for thoracolumbar fractures. Neurosurg Clin N Am 2014; 25(2): 337–346. doi: 10.1016/j.nec.2013.12.011.

33. Koroves­sis P, Hadjipavlou A, Repantis T. Minimal invasive short posterior instrumentation plus bal­loon kyphoplasty with calcium phosphate for burst and severe compres­sion lumbar fractures. Spine (Phila Pa 1976) 2008; 33(6): 658–667. doi: 10.1097/BRS.0b013e318166e0bb.

34. Tinel­li M, Matschke S, Adams M et al. Cor­rect position­­ing of pedicle screws with a percutaneous minimal invasive system in spine trauma. Orthop Traumatol Surg Res 2014; 100(4): 389–393. doi: 10.1016/j.otsr.2014.03.015.

35. Park Y, Ha JW, Lee YT et al. Percutaneous placement of pedicle screws in overweight and obese patients. Spine J 2011; 11(10): 919–924. doi: 10.1016/j.spinee.2011.07.029.

36. Wanek T, Adamus M, Novák V et al. Porovnání peroperační radiační expozice při otevřené a miniinvazivní transpedikulární fixaci hrudní a bederní páteře. Cesk Slov Neurol N 2013; 76/109(5): 608–613.

37. Kruger A, Ram­mler K, Zir­­ing E et al. Percutaneous minimal­ly invasive instrumentation for traumatic thoracic and lumbar fractures: a prospective analysis. Acta Orthop Belg 2012; 78(3): 376–381.

38. Wang HW, Li CQ, Zhou Y et al. Percutaneous pedicle screw fixation through the pedicle of fractured vertebra in the treatment of type A thoracolumbar fractures us­­ing Sextant system: an analysis of 38 cases. Chin J Traumatol 2010; 13(3): 137–145.

39. Ni WF, Huang YX, Chi YL et al. Percutaneous pedicle screw fixation for neurologic intact thoracolumbar burst fractures. J Spinal Disord Tech 2010; 23(8): 530–537. doi: 10.1097/BSD.0b013e3181c72d4c.

40. Wild MH, Glees M, Plieschnegger C et al. Five-year fol­low-up examination after purely minimal­­ly invasive posterior stabilization of thoracolumbar fractures: a comparison of minimal­ly invasive percutaneously and conventional­ly open treated patients. Arch Orthop Trauma Surg 2007; 127(5): 335–343. doi: 10.1007/s00402-006-0264-9.

41. Lee JK, Jang JW, Kim TW et al. Percutaneous short-segment pedicle screw placement without fusion in the treatment of thoracolumbar burst fractures: is it ef­fective? Comparative study with open short-segment pedicle screw fixation with posterolateral fusion. Acta Neurochir (Wien) 2013; 155(12): 2305–2312. doi: 10.1007/s00701-013-1859-x.

42. Diniz JM, Botelho RV. Is fusion neces­sary for thoracolumbar burst fracture treated with spinal fixation? A systematic review and meta-analysis. J Neurosurg Spine 2017; 27(5): 584–592. doi: 10.3171/2017.1.SPINE161014.

43. Dhall SS, Wadhwa R, Wang MY et al. Traumatic thoracolumbar spinal injury: an algorithm for minimal­ly invasive surgical management. Neurosurg Focus 2014; 37(1): E9.

44. Court C, Vincent C. Percutaneous fixation of thoraco­lumbar fractures: cur­rent concepts. Orthop Traumatol Surg Res 2012; 98(8): 900–909. doi: 10.1016/j.otsr.2012.09.014.

45. Zhao QM, Gu XF, Yang HL et al. Surgical outcome of posterior fixation, includ­­ing fractured vertebra, for thoracolumbar fractures. Neurosciences (Riyadh) 2015; 20(4): 362–367. doi: 10.17712/nsj.2015.4.20150318.

46. Gros­sbach AJ, Dahdaleh NS, Abel TJ et al. Flexion-distraction injuries of the thoracolumbar spine: open fusion versus percutaneous pedicle screw fixation. Neurosurg Focus 2013; 35(2): E2. doi: 10.3171/2013.6.FOCUS13176.

47. Kakarla UK, Little AS, Chang SW et al. Placement of percutaneous thoracic pedicle screws us­­ing neuronavigation. World Neurosurg 2010; 74(6): 606–610. doi: 10.1016/j.wneu.2010.03.028.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 6

2018 Issue 6

Most read in this issue

This topic is also in:


Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account