Neurorehabilitation of gait impairment us­­ing functional electrical stimulation –  cur­rent findings from randomized clinical trials


Authors: K. Novotná 1,2;  J. Jeníček 3;  M. Janatová 3,4;  E. Kubala;  Havrdová 1;  Y. Angerová 3
Authors‘ workplace: Neurologická klinika a Centrum klinických neurověd, 1. LF UK a VFN v Praze 1;  MS rehab z. s. 3 Klinika rehabilitačního lékařství 1. LF UK a VFN v Praze 2;  Společné pracoviště biomedicínského inženýrství FBMI a ČVUT a 1. LF UK, Praha 4
Published in: Cesk Slov Neurol N 2019; 82(6): 621-626
Category: Review Article
doi: https://doi.org/10.14735/amcsnn2019621

Overview

The review article sum­marizes results from studies with functional electrical stimulation (FES) in neurorehabilitation. In neurorehabilitation, FES is used mostly for therapeutic improvement of the sw­­ing phase of the gait cycle by stimulation of dorsal flexor muscles. For this review article, 510 papers were screened and 42 papers were eligible for a more detailed analysis. Based on the available studies, it seems that FES may constitute an enrichment of traditional therapeutic practice (such as exercise based on neurophysiological principles, gait and balance training). In some patients, FES may result in improved functional status rather than conventional ther­apy.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manu­script met the ICMJE “uniform requirements” for biomedical papers.

Keywords:

Multiple sclerosis – stroke – neurorehabilitation – Functional electrical stimulation – gait


Sources

1. Liberson WT, Holmquest HJ, Scot D et al. Functional electrother­apy: stimulation of the peroneal nerve synchronized with the sw­­ing phase of the gait of hemiplegic patients. Arch Phys Med Rehab 1961; 42: 101– 105.

2. Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. An­nu Rev Biomed Eng 2005; 7: 327– 360. doi: 10.1146/ an­nurev.bio­eng.6.040803.140103.

3. Votava J. Rehabilitace osob po cévní mozkové příhodě. Neurol praxi 2001; 4: 184– 189.

4. Cameron MH. The walkaide® functional electrical stimulation system –  a novel therapeutic approach for foot drop in central nervous system disorders. Europ Nerologic Rev 2010; 5(2): 18– 20. doi: http:/ / doi.org/ 10.17925/ ENR.2010.05.02.18.

5. Knutson JS, Harley MY, Hisel TZ et al. Contralateral­ly control­led functional electrical stimulation for recovery of elbow extension and hand open­­ing after stroke: a pilot case series study. Am J Phys Med Rehab 2014; 93(6): 528– 539. doi: 10.1097/ PHM.0000000000000066.

6. Maher CG, Sher­rington C, Herbert RD et al. Reliabi­lity of the PEDro scale for rat­­ing quality of randomized control­led trials. Phys Ther 2003; 83(8): 713– 721.

7. Chung Y, Kim JH, Cha Y et al. Therapeutic ef­fect of functional electrical stimulation-triggered gait train­­ing cor­respond­­ing gait cycle for stroke. Gait Posture 2014; 40(3): 471– 475. doi: 10.1016/ j.gaitpost.2014.06.002.

8. Rosenkranz K, Rothwell JC. The ef­fect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J Physiol 2004; 561(Pt 1): 307– 320. doi: 10.1113/ jphysiol.2004.069328.

9. Cheng JS, Yang YR, Cheng SJ et al. Ef­fects of combin­­ing electric stimulation with active ankle dorsiflexion while stand­­ing on a rocker board: a pilot study for subjects with spastic foot after stroke. Arch Phys Med Rehab 2010; 91(4): 505– 512. doi: 10.1016/ j.apmr.2009.11.022.

10. Gál O, Hoskovcová M, Jech R. Neuroplasticita, restituce motorických funkcí a možnosti rehabilitace spastické parézy. Rehab fyz Lék 2015; 22(3): 101– 127.

11. Sabut SK, Sikdar C, Kumar R et al. Functional electrical stimulation of dorsiflexor muscle: ef­fects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation 2011; 29(4): 393– 400. doi: 10.3233/ NRE-2011-0717.

12. Esnouf JE, Taylor PN, Mann GE et al. Impact on activities of daily liv­­ing us­­ing a functional electrical stimu­lation device to improve dropped foot in people with multiple sclerosis, measured by the Canadian Occupational Performance Measure. Mult Scler 2010; 16(9): 1141– 1147. doi: 10.1177/ 1352458510366013.

13. Leung J, Harvey LA, Moseley AM et al. Stand­­ing with electrical stimulation and splint­­ing is no better than stand­­ing alone for management of ankle plantarflexion contractures in people with traumatic brain injury: a randomised trial. J Physiother 2014; 60(4): 201– 208. doi: 10.1016/ j.jphys.2014.09.007.

14. Tong RK, Ng MF, Li LS et al. Gait train­­ing of patients after stroke us­­ing an electromechanical gait trainer combined with simultaneous functional electrical stimulation. Phys Ther 2006; 86(9): 1282– 1294. doi: 10.2522/ ptj.20050183.

15. Ng MF, Tong RK, Li LS. A pilot study of randomized clinical control­led trial of gait train­­ing in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month fol­low-up. Stroke 2008; 39(1): 154– 160. doi: 10.1161/ STROKEAHA.107.495705.

16. Daly JJ, Zimbelman J, Roenigk KL et al. Recovery of coordinated gait: randomized control­led stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training. Neurorehabil Neural Repair 2011; 25(7): 588– 596. doi: 10.1177/ 1545968311400092.

17. Klud­­ing PM, Dun­n­­ing K, O’Dell MW et al. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 2013; 44(6): 1660– 1669. doi: 10.1161/ STROKEAHA.111.000334.

18. Everaert DG, Stein RB, Abrams GM et al. Ef­fect of a foot-drop stimulator and ankle-foot orthosis on walk­­ing performance after stroke: a multicenter randomized control­led trial. Neurorehabil Neural Repair 2013; 27(7): 579– 591. doi: 10.1177/ 1545968313481278.

19. Sabut SK, Sikdar C, Mondal R et al. Restoration of gait and motor recovery by functional electrical stimulation ther­apy in persons with stroke. Disabil Rehabil 2010; 32(19): 1594– 1603. doi: 10.3109/ 09638281003599596.

20. Bethoux F, Rogers HL, Nolan KJ et al. Long-term fol­low-up to a randomized control­led trial compar­­ing peroneal nerve functional electrical stimulation to an ankle foot orthosis for patients with chronic stroke. Neurorehabil Neural Repair 2015; 29(10): 911– 922. doi: 10.1177/ 1545968315570325.

21. Prenton S, Hol­lands KL, Ken­ney LP et al. Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic ef­fects on foot drop: a meta--analysis provid­­ing direction for future research. J Rehabil Med 2018; 50(2): 129– 139. doi: 10.2340/ 16501977-2289.

22. Embrey DG, Holtz SL, Alon G et al. Functional electrical stimulation to dorsiflexors and plantar flexors dur­­ing gait to improve walk­­ing in adults with chronic hemiplegia. Arch Phys Med Rehabil 2010; 91(5): 687– 696. doi: 10.1016/ j.apmr.2009.12.024.

23. Peurala SH, Tarkka IM, Pitkanen K et al. The ef­fectiveness of body weight-supported gait train­­ing and floor walk­­ing in patients with chronic stroke. Arch Phys Med Rehabil 2005; 86(8): 1557– 1564. doi: 10.1016/ j.apmr.2005.02.005.

24. Shef­fler LR, Bailey SN, Wilson RD et al. Spatiotemporal, kinematic, and kinetic ef­fects of a peroneal nerve stimulator versus an ankle foot orthosis in hemiparetic gait. Neurorehabil Neural Repair 2013; 27(5): 403– 410. doi: 10.1177/ 1545968312465897.

25. Cho MK, Kim JH, Chung Y et al. Treadmill gait train­­ing combined with functional electrical stimulation on hip abductor and ankle dorsiflexor muscles for chronic hemiparesis. Gait Posture 2015; 42(1): 73– 78. doi: 10.1016/ j.gaitpost.2015.04.009.

26. Kottink AI, Hermens HJ, Nene AV et al. Therapeutic ef­fect of an implantable peroneal nerve stimulator in subjects with chronic stroke and footdrop: a ran­domized control­led trial. Phys Ther 2008; 88(4): 437– 448. doi: 10.2522/ ptj.20070035.

27. Mesci N, Ozdemir F, Kabayel DD et al. The ef­fects of neuromuscular electrical stimulation on clinical improvement in hemiplegic lower extremity rehabilitation in chronic stroke: a single-blind, randomised, control­led trial. Disabil Rehabil 2009; 31(24): 2047– 2054. doi: 10.3109/ 09638280902893626.

28. Solopova I, Tihonova D, Grishin A et al. As­sisted leg displacements and progres­sive load­­ing by a tilt table combined with FES promote gait recovery in acute stroke. NeuroRehabilitation 2011; 29(1): 67– 77. doi: 10.3233/ NRE-2011-0679.

29. Yan T, Hui-Chan CW, Li LS. Functional electrical stimu­lation improves motor recovery of the lower extremity and walk­­ing ability of subjects with first acute stroke: a randomized placebo-control­led trial. Stroke 2005; 36(1): 80– 85. doi: 10.1161/ 01.STR.0000149623.24906.63.

30. Ghédira M, Albertsen IM, Mardale V et al. Wireles­s, accelerometry-triggered functional electrical stimulation of the peroneal nerve in spastic paresis: a randomized, control­led pilot study. As­sist Technol 2017; 29(2): 99– 105. doi: 10.1080/ 10400435.2016.1214933.

31. Sharif F, Ghulam S, Malik AN et al. Ef­fectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke. J Coll Physicians Surg Pak 2017; 27(11): 703– 706. doi: 2747.

32. Charlton CS, Ridd­­ing MC, Thompson PD et al. Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. J Neurol Sci 2003; 208(1– 2): 79– 85. doi: 10.1016/ s0022-510x(02)00443-4.

33. Meesen RL, Cuypers K, Rothwell JC et al. The ef­fect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. Hum Brain Mapp 2011; 32(6): 872– 882. doi: 10.1002/ hbm.21075.

34. Hara Y. Brain plasticity and rehabilitation in stroke patients. J Nippon Med Sch 2015; 82(1): 4– 13. doi: 10.1272/ jnms.82.4.

35. Merkel C, Hausmann J, Hopf JM et al. Active prosthesis dependent functional cortical reorganization fol­low­­ing stroke. Sci Rep 2017; 7(1): 8680. doi: 10.1038/ s41598-017-09325-8.

36. Meimoun M, Bayle N, Baude M et al. Intensity in the neurorehabilitation of spastic paresis. Rev Neurol (Paris) 2015; 171(2): 130– 140. doi: 10.1016/ j.neurol.2014.09.011.

37. Gandol­la M, Ward NS, Molteni F et al. The neural cor­relates of long-term car­ryover fol­low­­ing functional electrical stimulation for stroke. Neural Plast 2016; 2016: 4192718. doi: 10.1155/ 2016/ 4192718.

38. Plautz EJ, Mil­liken GW, Nudo RJ. Ef­fects of repeti­tive motor train­­ing on movement representations in adult squir­rel monkeys: role of use versus learning. Neurobio­l Learn Mem 2000; 74(1): 27– 55. doi: 10.1006/ nlme.1999.3934.

39. Nudo RJ, Mil­liken GW, Jenkins WM et al. Use-dependent alterations of movement representations in primary motor cortex of adult squir­rel monkeys. J Neurosci 1996; 16(2): 785– 807.

40. Kimberley TJ, Samargia S, Moore LG et al. Comparison of amounts and types of practice dur­­ing rehabili­tation for traumatic brain injury and stroke. J Rehabil Res Dev 2010; 47(9): 851– 862.

41. Bul­ley C, Mercer TH, Hooper JE et al. Experiences of functional electrical stimulation (FES) and ankle foot orthoses (AFOs) for foot-drop in people with multiple sclerosis. Disabil Rehabil As­sist Technol 2015; 10(6): 458– 467. doi: 10.3109/ 17483107.2014.913713.

42. Bul­ley C, Shiels J, Wilkie K et al. User experiences, preferences and choices relat­­ing to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke. Physiother­apy 2011; 97(3): 226– 233. doi: 10.1016/ j.physio.2010.11.001.

43. Lairamore CI, Gar­rison MK, Bourgeon L et al. Lower Extremity functional electrical stimulation dur­­ing inpatient rehabilitation: a pilot study investigat­­ing gait and muscle activity in persons with stroke or brain injury. Percept Mot Skil­ls 2014; 119(2): 591– 608. doi: 10.2466/ 15.25.PMS.119c19z5.

44. Kunkel D, Picker­­ing RM, Burnett M et al. Functional electrical stimulation with exercises for stand­­ing balance and weight transfer in acute stroke patients: a feasibility randomized control­led trial. Neuromodulation 2013; 16(2): 168– 177. doi: 10.1111/ j.1525-1403.2012.00488.x.

45. Aaron SE, Vanderwerker CJ, Embry AE et al. FES-as­sisted cycl­­ing improves aerobic capacity and locomotor function postcerebrovascular accident. Med Sci Sports Exerc 2018; 50(3): 400– 406. doi: 10.1249/ MSS.0000000000001457.

46. Peri E, Ambrosini E, Pedrocchi A et al. Can FES-augmented active cycl­­ing train­­ing improve locomotion in post-acute elderly stroke patients? Eur J Transl Myol 2016; 26(3): 6063. doi: 10.4081/ ejtm.2016.6063.

47. Wilkinson IA, Bur­ridge J, Strike P et al. A randomised control­led trial of integrated electrical stimulation and physiother­apy to improve mobility for people less than 6 months post stroke. Disabil Rehabil As­sist Technol 2015; 10(6): 468– 474. doi: 10.3109/ 17483107.2014.917125.

48. O‘Dell MW, Dun­n­­ing K, Klud­­ing P et al. Response and prediction of improvement in gait speed from functional electrical stimulation in persons with poststroke drop foot. PM R 2014; 6(7): 587– 601. doi: 10.1016/ j.pmrj.2014.01.001.

49. Sota K, Uchiyama Y, Ochi M et al. Examination of factors related to the ef­fect of improv­­ing gait speed with functional electrical stimulation intervention for stroke patients. PM R 2018; 10(8): 798– 805. doi: 10.1016/ j.pmrj.2018.02.012.

50. Taylor PN, Bur­ridge JH, Dunkerley AL et al. Clinical use of the Odstock dropped foot stimulator: its ef­fect on the speed and ef­fort of walking. Arch Phys Med Rehabil 1999; 80(12): 1577– 1583. doi: 10.1016/ s0003-9993(99)90333-7.

51. van Swigchem R, van Duijnhoven HJ, den Boer J et al. Ef­fect of peroneal electrical stimulation versus an ankle-foot orthosis on obstacle avoidance ability in people with stroke-related foot drop. Phys Ther 2012; 92(3): 398– 406. doi: 10.2522/ ptj.20100405.

52. Wilkie KM, Shiels JE, Bul­ley C et al. „Functional electrical stimulation (FES) impacted on important aspects of my life“: a qualitative exploration of chronic stroke patients‘ and carers‘ perceptions of FES in the management of dropped foot. Physiother Theory Pract 2012; 28(1): 1– 9. doi: 10.3109/ 09593985.2011.563775.

53. Taylor P, Humphreys L, Swain I. The long-term cost-ef­fectiveness of the use of Functional Electrical Stimulation for the cor­rection of dropped foot due to upper motor neuron lesion. J Rehabil Med 2013; 45(2): 154– 160. doi: 10.2340/ 16501977-1090.

54. Bar­rett C, Taylor P. The ef­fects of the odstock drop foot stimulator on perceived quality of life for people with stroke and multiple sclerosis. Neuromodulation 2010; 13(1): 58– 64. doi: 10.1111/ j.1525-1403.2009.00250.x.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 6

2019 Issue 6

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account