Choroidální tloušťka u asymp­tomatických pa­cientů se stenózou karotidy


Autoři: Ç. Öktem 1;  E. Ö. Öktem 2;  A. Kurt 3;  R. Kilic 3;  B. E. Sahin 4;  A. Yetis 4;  Y. Dadali 5
Působiště autorů: Department of Ophthalmology, Alaaddin Keykubat University Alanya Education and Research Hospital, Antalya, Turkey 1;  Department of Neurology, Alaaddin Keykubat University Alanya Education and Research Hospital, Antalya, Turkey 2;  Department of Ophthalmology, Ahi Evran University Education and Research Hospital, Kirsehir, Turkey 3;  Department of Neurology, Ahi Evran University Education and Research Hospital, Kirsehir, Turkey 4;  Department of Radiology, Ahi Evran University Education and Research Hospital, Kirsehir, Turkey 5
Vyšlo v časopise: Cesk Slov Neurol N 2020; 83(1): 73-78
Kategorie: Původní práce
doi: 10.14735/amcsnn202073

Souhrn

Cíl: Měřit choroidální tloušťku (ChT) metodou optické koherentní tomografie se zlepšeným hloubkovým zobrazováním (enhanced-depth imaging optic coherence tomography; EDI-OCT) u pacientů se stenózou a. carotis interna (ACI) a zkoumat vztah mezi ChT a stenózou ACI.

Materiál a metody: Do studie jsme zařadili 36 očí 25 asymptomatických pacientů s 50% nebo vyšší stenózou ACI a 36 očí 21 zdravých kontrol. ChT byla měřena metodou EDI-OCT z celkem 6 bodů u obou skupin. Výsledky byly statisticky porovnávány mezi skupinami.

Výsledky: Mezi pacienty s asymptomatickou stenózou ACI a zdravými jedinci bez stenózy nebyly signifikantní rozdíly v subfoveální ChT (p = 0,085), v 500 μm nasálně k fovee (p = 0,076), v 1 000 μm nasálně k fovee (p = 0,052), v 500 μm temporálně k fovee (p = 0,182), v 1 000 μm temporálně k fovee (p = 0,115), v 1 500 μm temporálně k fovee (p = 0,174). Navíc nebyl pozorován signifikantní rozdíl v hodnotách ChT naměřených z 6 bodů mezi stenotickou stranou a nestenotickou stranou u 14 pacientů s jednostrannou stenózou ACI (p > 0,05 pro všechny body).

Závěr: Choroidální tloušťka se nemusí měnit u asympromatické stenózy ACI v porovnání se zdravými jedinci bez stenózy. Jsou však zapotřebí další studie pro potvrzení našich výsledků.

Klíčová slova:

vnitřní karotida – cévnatka – optická koherentní tomografie – stenóza – tloušťka


Zdroje

1. Fisher CM. Transient monocular blindness as­sociated with hemiplegia. AMA Arch Ophthalmol 1952; 47(2): 167– 203. doi: 10.1001/ archopht.1952.01700030174005.

2. Hol­lenhorst RW. Vascular status of patients who have cholesterol emboli in the retina. Am J Ophthalmol 1966; 61 (5 Pt 2): 1159– 1165. doi: 10.1016/ 0002-9394(66)90238-8.

3. Carter JE. Chronic ocular ischemia and carotid vascular dis­ease. Stroke 1985; 16(4): 721– 728. doi: 10.1161/ 01.str.16.4.721.

4. Kerty E, Eide N, Horven I. Ocular hemodynamic changes in patients with high-grade carotid occlusive dis­ease and development of chronic ocular ischaemia. II. Clinical findings. Acta Ophthalmol Scand 1995; 73(1): 72– 76. doi: 10.1111/ j.1600-0420.1995.tb00017.x.

5. Hayreh SS. Orbital vascular anatomy. Eye (Lond) 2006; 20(10): 1130– 1144. doi: 10.1038/ sj.eye.6702377.

6. Ciof­fi GA, Granstam E, Alm A. Ocular circulation. In: Kaufman PL, Alm A (eds). Adler‘s physiology of the eye: clinical application. 10th ed. St Louis, USA: Mosby 2003: 747– 784.

7. Roh S, Weiter JJ. Retinal and choroidal circulation. In: Bavbek T (ed). Yanoff and Duker ophthalmology. 2nd ed. Istanbul, Turkey: Hayat Tıp 2007: 779– 782.

8. Nickla DL, Wal­lman J. The multifunctional choroid. Prog Retin Eye Res 2010; 29(2): 144– 168. doi: 10.1016/ j.preteyeres.2009.12.002.

9. Ehrlich R, Har­ris A, Wentz SM et al. Anatomy and regulation of the optic nerve blood flow. In: Stein JP (ed). Reference module in neuroscience and biobehavioral psychology. Amsterdam: Elsevier 2016.

10. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imag­­ing spectral-domain optical coherence tomography. Am J Ophthalmol 2008; 146(4): 496– 500. doi: 10.1016/ j.ajo.2008.05.032.

11. Margolis R, Spaide RF. A pilot study of enhanced depth imag­­ing optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 2009; 147(5): 811– 815. doi: 10.1016/ j.ajo.2008.12.008.

12. Manjunath V, Taha M, Fujimoto JG et al. Choroidal thickness in normal eyes measured us­­ing Cir­rus-HD optical coherence tomography. Am J Ophthalmol 2010; 150(3): 325– 329. doi: 10.1016/ j.ajo.2010.04.018.

13. Wang H, Wang YL, Li HY. Subfoveal choroidal thickness and volume in severe internal carotid artery stenosis patients. Int J Ophthalmol 2017; 10(12): 1870– 1876. doi: 10.18240/ ijo.2017.12.13.

14. Laviers H, Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the cur­rent literature. Graefes Arch Clin Exp Ophtalmol 2014; 252(12): 1871– 1883. doi: 10.1007/ s00417-014-2840-y.

15. Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophtalmol Vis Sci 2011; 52(11): 8438– 8441. doi: 10.1167/ iovs.11-8108.

16. Usui S, Ikuno Y, Akiba M et al. Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophtalmol Vis Sci 2012; 53(4): 2300– 2307. doi: 10.1167/ iovs.11-8383.

17. Chakraborty R, Read SA, Read SA. Diurnal variations in axial length, choroidal thicknes­s, intraocular pres­sure, and ocular bio­metrics. Invest Ophthalmol Vis Sci 2011; 52(8): 5121– 5129. doi: 10.1167/ iovs.11-7364.

18. Shinohara Y, Kashima T, Akiyama H et al. Alteration of choroidal thickness in a case of carotid cavernous fistula: a case report and a review of the literature. BMC Ophthalmol 2013; 13: 75. doi: 10.1186/ 1471-2415-13-75.

19. González Martín-Moro J, Sales-Sanz M, Oblanca-Llamazares N et al. Choroidal thicken­­ing in a case of carotid cavernous fistula. Orbit 2018; 37(4): 306– 308.

20. Lareyre F, Nguyen E, Raf­fort J et al. Changes in ocular subfoveal choroidal thickness after carotid endarterectomy us­­ing enhanced depth imag­­ing optical coherence tomography: a pilot study. Angiology 2018; 69(7): 574– 581. doi: 10.1177/ 0003319717737223.

21. Demirok G, Topalak Y, Başaran MM et al. Cor­relation of ocular pulse amplitude, choroidal thicknes­s, and internal carotid artery doppler ultrasound findings in normal eyes. Semin Ophthalmol 2017; 32(5): 620– 624. doi: 10.3109/ 08820538.2016.1141223.

22. Kang HM, Lee CS, Lee SC. Thin­ner subfoveal choroidal thickness in eyes with ocular ischemic syndrome than in unaf­fected contralateral eyes. Graefes Arch Clin Exp Ophthalmol 2014; 252(5): 851– 852. doi: 10.1007/ s00417-014-2609-3.

23. Sayin N, Kara N, Uzun F et al. A quantitative evaluation of the posterior segment of the eye us­­ing spectral domain OCT in carotid artery dis­ease: a pilot study. Ophtalmic Surg Lasers Imag­­ing Retina 2015; 46(2): 180– 185. doi: 10.3928/ 23258160-20150213-20.

24. Kim DY, Joe SG, Lee JY et al. Choroidal thickness in eyes with unilateral ocular ischemic syndrome. J Opthalmol 2015; 2015: 620372. doi: 10.1155/ 2015/ 620372.

25. Mizener JB, Podhajsky P, Hayreh SS. Ocular ischemic syndrome. Ophthalmology 1997; 104(5): 859– 864. doi: 10.1016/ s0161-6420(97)30221-8.

26. Klijn CJ, Kappel­le LJ, van Schooneveld MJ et al. Venous stasis retinopathy in symp­tomatic carotid artery occlusion: prevalence, cause, and outcome. Stroke 2002; 33(3): 695– 701. doi: 10.1161/ hs0302.104619.

27. Akçay Bİ, Kardeş E, Maçin S et al. Evaluation of subfoveal choroidal thickness in internal carotid artery stenosis. J Ophthalmol 2016; 2016:5296048. doi: 10.1155/ 2016/ 5296048.

Štítky
Dětská neurologie Neurochirurgie Neurologie
Článek Editorial

Článek vyšel v časopise

Česká a slovenská neurologie a neurochirurgie

Číslo 1

2020 Číslo 1

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se